Commit Graph

14 Commits

Author SHA1 Message Date
Yingda Chen
90b53547c4 fix docs build 2024-08-13 14:54:45 +08:00
xingjun.wxj
0db0ec5586 Merge code from github
1. Merge(add) daily regression from github PR (daily_regression.yaml)
2. Add lora stable diffusion from github PR
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13010802
* fix: device arg not work, rename device to ngpu (#272)

* Correcting the lora stable diffusion example script (#300)

* add vad model and punc model in README.md 

add vad model and punc model

* Merge pull request #302 from modelscope/langgz-patch-1

add vad model and punc model in README.md

* add 1.6

* modify ignore

* Merge pull request #307 from modelscope/dev_rs_16

Merge release 1.6

* undo datetime to 2099

* Merge pull request #311 from modelscope/fix_master_version

undo datetime to 2099

* add daily regression workflow

* modify workflow name

* fix cron format issue

* lora trainer

* Merge pull request #315 from liuyhwangyh/add_regression_workflow

add daily regression workflow
2023-06-21 10:22:06 +08:00
xingjun.wxj
e02a260c93 Refactor the task_datasets module
Refactor the task_datasets module:

1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets.
2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset().
2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module.
3. Refactor the pipeline for loading custom dataset: 
	1) Only use MsDataset.load() function to load the custom datasets.
	2) Combine MsDataset.load() with class EpochBasedTrainer.
4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset()
5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg()
6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset()
7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module.
8. Add class TorchCustomDataset as a superclass for custom datasets classes.
9. To move modules/classes/functions:
	1) Move module msdatasets.audio to custom_datasets
	2) Move module msdatasets.cv to custom_datasets
	3) Move module bad_image_detecting to custom_datasets
	4) Move module damoyolo to custom_datasets
	5) Move module face_2d_keypoints to custom_datasets
	6) Move module hand_2d_keypoints to custom_datasets
	7) Move module human_wholebody_keypoint to custom_datasets
	8) Move module image_classification to custom_datasets
	9) Move module image_inpainting to custom_datasets
	10) Move module image_portrait_enhancement to custom_datasets
	11) Move module image_quality_assessment_degradation to custom_datasets
	12) Move module image_quality_assmessment_mos to custom_datasets
	13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets
	14) Move class MGeoRankingDataset to custom_datasets
	15) Move module movie_scene_segmentation custom_datasets
	16) Move module object_detection to custom_datasets
	17) Move module referring_video_object_segmentation to custom_datasets
	18) Move module sidd_image_denoising to custom_datasets
	19) Move module video_frame_interpolation to custom_datasets
	20) Move module video_stabilization to custom_datasets
	21) Move module video_super_resolution to custom_datasets
	22) Move class GoproImageDeblurringDataset to custom_datasets
	23) Move class EasyCVBaseDataset to custom_datasets
	24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets
	25) Move class RedsImageDeblurringDataset to custom_datasets
	26) Move class TextRankingDataset to custom_datasets
	27) Move class VecoDataset to custom_datasets
	28) Move class VideoSummarizationDataset to custom_datasets
10. To delete modules/functions/classes:
	1) Del module task_datasets
	2) Del to_task_dataset() in EpochBasedTrainer
	3) Del build_dataset() in EpochBasedTrainer and renew a same name function.
11. Rename class Datasets to CustomDatasets in metainfo.py

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
2023-03-10 09:03:32 +08:00
wenmeng.zwm
677e49eaf3 update api doc
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11582587
2023-02-10 07:48:11 +00:00
mulin.lyh
ab07dc5b5a google style docs and selected file generator
ref: https://yuque.alibaba-inc.com/pai/rwqgvl/go8sc8tqzeqqfmsz
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11150212

    * google style docs and selected file generator
2023-01-03 16:27:29 +08:00
wenmeng.zwm
231f400133 [to #43112534] finetune support and first case
co-contributed with 夕陌&雨泓

 * add torch epoch based trainer and dis utils
 * add hooks including optimizer, lrscheduler, logging, checkpoint, evaluation, time profiling
 * add torch mdoel base and test
 * add optimizer and lrscheduler module
 * add sbert for text classification example
 * add task_dataset for dataset-level processor

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9338412
2022-07-14 16:25:55 +08:00
yingda.chen
8a65b0b1ff [to #42322933]update docs
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9316720
2022-07-08 14:52:29 +08:00
wenmeng.zwm
274cf6ffa9 [to #42362425] fix audio_requirement and refine quickstart, changelog doc
* make audio requirements optional
 * add changelog for version v0.2
 * add numpy constraint for compatibility with tensorflow1.15
 * update faq
 * fix nlp requiring tensorflow
 * add torchvision to multimodal dependency
 * bump version from 0.2.1 to 0.2.2
 * add warning msg when tensorflow is not installed
 
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9268278
2022-07-05 21:44:33 +08:00
yingda.chen
6702b29e21 [to #42794773]rename pydataset to msdataset
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9165402
2022-06-27 11:09:38 +08:00
Yingda Chen
b6e3fd80b0 Revert "[to #42794773] rename pydataset to msdataset"
This reverts commit c8e2e6de0e.
2022-06-25 08:50:28 +08:00
Yingda Chen
c8e2e6de0e [to #42794773] rename pydataset to msdataset 2022-06-25 08:36:48 +08:00
wenmeng.zwm
1f6b376599 [to #42373878] refactor maaslib to modelscope
1.  refactor maaslib to modelscope
2.  fix UT error
3.  support pipeline which does not register default model

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8988388
2022-06-09 20:16:26 +08:00
wenmeng.zwm
c4bfd6cced [to #41999503] refine doc and requirements for linux and mac
1. refine quick start and pipeline doc
2. remove tf pytorch easynlp from requirements
3. lazy import for torch and tensorflow
4. test successfully on linux and mac intel cpu
5. update api doc

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8882373
2022-05-31 11:49:46 +08:00
wenmeng.zwm
db4a8be9c5 [to #41669377] docs and tools refinement and release
1. add build_doc linter script
2. add sphinx-docs support
3. add development doc and api doc
4. change version to 0.1.0 for the first internal release version

Link: https://code.aone.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8775307
2022-05-20 16:51:34 +08:00