Commit Graph

5 Commits

Author SHA1 Message Date
hemu.zp
eecdd90412 add finetune_text_generation
1. Add TrainingArgs and cli call form for text generation task
2. Fix dp+tp finetune bug
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11929345
2023-03-10 15:08:56 +08:00
Firmament-cyou
8092a82577 add directory for image_classification finetuneing scripts (#115) 2023-02-21 11:33:41 +08:00
hemu.zp
82482b3e96 update training args
Based on feat/0131/nlp_args branch, the original code review: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11408570

Support for running finetuning from the command line with training args, Compatible with the configuration optimization.
2023-02-10 05:32:21 +00:00
zhangzhicheng.zzc
42898badf7 [to #42322933] update ast_index logic 2023-01-11 10:43:56 +08:00
wenmeng.zwm
b8ec677739 add training args support and image classification fintune example
design doc: https://yuque.antfin.com/pai/rwqgvl/khy4uw5dgi39s6ke

usage:
```python

    from modelscope.trainers.training_args import (ArgAttr, MSArgumentParser,
                                               training_args)


    training_args.topk = ArgAttr(cfg_node_name=['train.evaluation.metric_options.topk',
                                                'evaluation.metric_options.topk'],
                                 default=(1,), help='evaluation using topk, tuple format, eg (1,), (1,5)')
    training_args.train_data = ArgAttr(type=str, default='tany0699/cats_and_dogs', help='train dataset')
    training_args.validation_data = ArgAttr(type=str, default='tany0699/cats_and_dogs', help='validation dataset')
    training_args.model_id = ArgAttr(type=str, default='damo/cv_vit-base_image-classification_ImageNet-labels', help='model name')

    parser = MSArgumentParser(training_args)
    cfg_dict = parser.get_cfg_dict()
    args = parser.args
    
    train_dataset = create_dataset(args.train_data, split='train')
    val_dataset = create_dataset(args.validation_data, split='validation')

    def cfg_modify_fn(cfg):
        cfg.merge_from_dict(cfg_dict)
        return cfg

    kwargs = dict(
        model=args.model_id,          # model id
        train_dataset=train_dataset,  # training dataset
        eval_dataset=val_dataset,     # validation dataset
        cfg_modify_fn=cfg_modify_fn     # callback to modify configuration
    )

    trainer = build_trainer(name=Trainers.image_classification, default_args=kwargs)
    # start to train
    trainer.train()
```
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11225071
2022-12-30 07:35:15 +08:00