Support lora for llama

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13080086

* support lora for llama

* update baichuan

* remove work_dir

* fixbug: 1. change ConfigDict to list when hooks key not in config 2. ignore all bin files when preparing output folder

* 1. support device_map 2. remove the operation of to float when using lora

* add inference file

* add comment

* support device_map
This commit is contained in:
hemu.zp
2023-06-29 22:05:34 +08:00
committed by wenmeng.zwm
parent cc0e7527d7
commit f4c90f2adf
16 changed files with 461 additions and 51 deletions

View File

@@ -4,14 +4,10 @@
import copy
import logging
import os
import shutil
import tempfile
import unittest
from dataclasses import dataclass, field
import json
import torch
import utils
from modelscope import TrainingArgs
from modelscope.hub.snapshot_download import snapshot_download
@@ -19,6 +15,8 @@ from modelscope.metainfo import Trainers
from modelscope.models.nlp.llama import LlamaForTextGeneration, LlamaTokenizer
from modelscope.msdatasets.dataset_cls.custom_datasets.torch_custom_dataset import \
TorchCustomDataset
from modelscope.swift import Swift
from modelscope.swift.lora import LoRAConfig
from modelscope.trainers import build_trainer
IGNORE_INDEX = -100
@@ -54,11 +52,35 @@ class TextGenerationArguments(TrainingArgs):
'help': 'The location of DeepSpeed json config file.',
})
work_dir: str = field(
default=None, metadata={
'help': 'The location of work dir',
use_lora: int = field(
default=0,
metadata={'help': 'Whether to use lora to train the model.'},
)
lora_rank: int = field(
default=32,
metadata={'help': 'The lora rank'},
)
lora_alpha: int = field(
default=32,
metadata={'help': 'The lora alpha'},
)
lora_dropout: float = field(
default=0.05,
metadata={'help': 'The lora dropout'},
)
device_map: str = field(
default=None,
metadata={
'help': 'A map that specifies where each submodule should go.'
})
zero_stage: int = field(
default=None, metadata={'help': 'The stage of zero_optimization'})
def _tokenize_fn(strings, tokenizer):
"""Tokenize a list of strings."""
@@ -211,12 +233,15 @@ if __name__ == '__main__':
cfg.train.dataloader = {'batch_size_per_gpu': 4, 'workers_per_gpu': 1}
if 'hooks' not in cfg.train:
cfg.train['hooks'] = []
cfg.train.hooks.append({
'type': 'DeepspeedHook',
'config': args.deepspeed,
'save_zero_checkpoint': True,
'with_mpu': False,
})
if args.deepspeed is not None:
cfg.train.hooks.append({
'type': 'DeepspeedHook',
'config': args.deepspeed,
'save_zero_checkpoint': True,
'with_mpu': False,
})
if args.zero_stage is not None:
cfg.train.hooks[-1]['zero_stage'] = args.zero_stage
cfg.preprocessor.sequence_length = 512
return cfg
@@ -225,7 +250,17 @@ if __name__ == '__main__':
args.model) else snapshot_download(args.model)
data_path = args.src_txt if args.src_txt else os.path.join(
model_path, 'alpaca_data.json')
model = LlamaForTextGeneration.from_pretrained(model_path)
model = LlamaForTextGeneration.from_pretrained(
model_path, device_map=args.device_map)
if args.use_lora != 0:
lora_config = LoRAConfig(
replace_modules=['q_proj', 'k_proj', 'v_proj'],
rank=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout)
model = model.bfloat16()
Swift.prepare_model(model, lora_config)
tokenizer = LlamaTokenizer.from_pretrained(
model_path,
@@ -234,10 +269,14 @@ if __name__ == '__main__':
)
special_tokens_dict = dict()
special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN
special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN
special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN
special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN
if tokenizer.pad_token is None or tokenizer.pad_token == '':
special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None or tokenizer.eos_token == '':
special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None or tokenizer.bos_token == '':
special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None or tokenizer.unk_token == '':
special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
@@ -263,7 +302,7 @@ if __name__ == '__main__':
trainer.train()
# prepare for inference
if int(os.environ.get('LOCAL_RANK', 0)) == 0:
if args.deepspeed and int(os.environ.get('LOCAL_RANK', 0)) == 0:
tokenizer.save_pretrained(os.path.join(args.work_dir, 'output'))
os.system(f'rm {args.work_dir}/output/pytorch_model*')
os.system(