mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 08:17:45 +01:00
Fix typos (#1328)
This commit is contained in:
@@ -126,7 +126,7 @@ AI for Science:
|
|||||||
|
|
||||||
* [uni-fold-multimer](https://modelscope.cn/models/DPTech/uni-fold-multimer/summary)
|
* [uni-fold-multimer](https://modelscope.cn/models/DPTech/uni-fold-multimer/summary)
|
||||||
|
|
||||||
**Note:** Most models on ModelScope are public and can be downloaded without account registration on modelscope website([www.modelscope.cn](www.modelscope.cn)), please refer to instructions for [model download](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%8B%E8%BD%BD), for dowloading models with api provided by modelscope library or git.
|
**Note:** Most models on ModelScope are public and can be downloaded without account registration on modelscope website([www.modelscope.cn](www.modelscope.cn)), please refer to instructions for [model download](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%8B%E8%BD%BD), for downloading models with api provided by modelscope library or git.
|
||||||
|
|
||||||
# QuickTour
|
# QuickTour
|
||||||
|
|
||||||
@@ -158,7 +158,7 @@ The output image with the background removed is:
|
|||||||

|

|
||||||
|
|
||||||
|
|
||||||
Fine-tuning and evaluation can also be done with a few more lines of code to set up training dataset and trainer, with the heavy-lifting work of training and evaluation a model encapsulated in the implementation of `traner.train()` and
|
Fine-tuning and evaluation can also be done with a few more lines of code to set up training dataset and trainer, with the heavy-lifting work of training and evaluation a model encapsulated in the implementation of `trainer.train()` and
|
||||||
`trainer.evaluate()` interfaces.
|
`trainer.evaluate()` interfaces.
|
||||||
|
|
||||||
For example, the gpt3 base model (1.3B) can be fine-tuned with the chinese-poetry dataset, resulting in a model that can be used for chinese-poetry generation.
|
For example, the gpt3 base model (1.3B) can be fine-tuned with the chinese-poetry dataset, resulting in a model that can be used for chinese-poetry generation.
|
||||||
|
|||||||
@@ -227,7 +227,7 @@ conda activate modelscope
|
|||||||
|
|
||||||
安装完前置依赖,你可以按照如下方式安装 ModelScope Library。
|
安装完前置依赖,你可以按照如下方式安装 ModelScope Library。
|
||||||
|
|
||||||
ModelScope Libarary 由核心框架,以及不同领域模型的对接组件组成。如果只需要 ModelScope 模型和数据集访问等基础能力,可以只安装 ModelScope 的核心框架:
|
ModelScope Library 由核心框架,以及不同领域模型的对接组件组成。如果只需要 ModelScope 模型和数据集访问等基础能力,可以只安装 ModelScope 的核心框架:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
pip install modelscope
|
pip install modelscope
|
||||||
|
|||||||
@@ -143,8 +143,8 @@ def print_example(example: Dict[str, Any], tokenizer) -> None:
|
|||||||
print(f'[INPUT] {tokenizer.decode(input_ids)}')
|
print(f'[INPUT] {tokenizer.decode(input_ids)}')
|
||||||
print()
|
print()
|
||||||
n_mask = Counter(labels)[-100]
|
n_mask = Counter(labels)[-100]
|
||||||
print(f'[LABLES_IDS] {labels}')
|
print(f'[LABELS_IDS] {labels}')
|
||||||
print(f'[LABLES] <-100 * {n_mask}>{tokenizer.decode(labels[n_mask:])}')
|
print(f'[LABELS] <-100 * {n_mask}>{tokenizer.decode(labels[n_mask:])}')
|
||||||
|
|
||||||
|
|
||||||
def data_collate_fn(batch: List[Dict[str, Any]], tokenizer) -> Dict[str, Any]:
|
def data_collate_fn(batch: List[Dict[str, Any]], tokenizer) -> Dict[str, Any]:
|
||||||
|
|||||||
@@ -202,7 +202,7 @@ def print_examples(examples: Dict[str, Any], tokenizer) -> None:
|
|||||||
print(f'[INPUT_IDS] {tokenizer.decode(input_ids)}')
|
print(f'[INPUT_IDS] {tokenizer.decode(input_ids)}')
|
||||||
print()
|
print()
|
||||||
print(
|
print(
|
||||||
f'[LABLES] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}'
|
f'[LABELS] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}'
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -297,12 +297,12 @@ class Heads(object):
|
|||||||
class Pipelines(object):
|
class Pipelines(object):
|
||||||
""" Names for different pipelines.
|
""" Names for different pipelines.
|
||||||
|
|
||||||
Holds the standard pipline name to use for identifying different pipeline.
|
Holds the standard pipeline name to use for identifying different pipeline.
|
||||||
This should be used to register pipelines.
|
This should be used to register pipelines.
|
||||||
|
|
||||||
For pipeline which support different models and implements the common function, we
|
For pipeline which support different models and implements the common function, we
|
||||||
should use task name for this pipeline.
|
should use task name for this pipeline.
|
||||||
For pipeline which suuport only one model, we should use ${Model}-${Task} as its name.
|
For pipeline which support only one model, we should use ${Model}-${Task} as its name.
|
||||||
"""
|
"""
|
||||||
pipeline_template = 'pipeline-template'
|
pipeline_template = 'pipeline-template'
|
||||||
# vision tasks
|
# vision tasks
|
||||||
@@ -1105,7 +1105,7 @@ class Preprocessors(object):
|
|||||||
|
|
||||||
For a general preprocessor, just use the function name as preprocessor name such as
|
For a general preprocessor, just use the function name as preprocessor name such as
|
||||||
resize-image, random-crop
|
resize-image, random-crop
|
||||||
For a model-specific preprocessor, use ${modelname}-${fuction}
|
For a model-specific preprocessor, use ${modelname}-${function}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# cv preprocessor
|
# cv preprocessor
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ def precook(s, n=4, out=False):
|
|||||||
can take string arguments as well.
|
can take string arguments as well.
|
||||||
:param s: string : sentence to be converted into ngrams
|
:param s: string : sentence to be converted into ngrams
|
||||||
:param n: int : number of ngrams for which representation is calculated
|
:param n: int : number of ngrams for which representation is calculated
|
||||||
:return: term frequency vector for occuring ngrams
|
:return: term frequency vector for occurring ngrams
|
||||||
"""
|
"""
|
||||||
words = s.split()
|
words = s.split()
|
||||||
counts = defaultdict(int)
|
counts = defaultdict(int)
|
||||||
|
|||||||
@@ -98,7 +98,7 @@ class INCEPTION_V3_FID(nn.Module):
|
|||||||
# Maps feature dimensionality to their output blocks indices
|
# Maps feature dimensionality to their output blocks indices
|
||||||
BLOCK_INDEX_BY_DIM = {
|
BLOCK_INDEX_BY_DIM = {
|
||||||
64: 0, # First max pooling features
|
64: 0, # First max pooling features
|
||||||
192: 1, # Second max pooling featurs
|
192: 1, # Second max pooling features
|
||||||
768: 2, # Pre-aux classifier features
|
768: 2, # Pre-aux classifier features
|
||||||
2048: 3 # Final average pooling features
|
2048: 3 # Final average pooling features
|
||||||
}
|
}
|
||||||
@@ -295,7 +295,7 @@ def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
|||||||
nception net (like returned by the function 'get_predictions')
|
nception net (like returned by the function 'get_predictions')
|
||||||
or generated samples.
|
or generated samples.
|
||||||
mu2: The sample mean over activations, precalculated on an
|
mu2: The sample mean over activations, precalculated on an
|
||||||
representive data set.
|
representative data set.
|
||||||
sigma1: The covariance matrix over activations for generated samples.
|
sigma1: The covariance matrix over activations for generated samples.
|
||||||
sigma2: The covariance matrix over activations, precalculated on an
|
sigma2: The covariance matrix over activations, precalculated on an
|
||||||
epresentive data set.
|
epresentive data set.
|
||||||
|
|||||||
@@ -37,7 +37,7 @@ class InverseTextProcessingPipeline(Pipeline):
|
|||||||
>>> sentence = 'sembilan ribu sembilan ratus sembilan puluh sembilan'
|
>>> sentence = 'sembilan ribu sembilan ratus sembilan puluh sembilan'
|
||||||
>>> print(pipeline_itn(sentence))
|
>>> print(pipeline_itn(sentence))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_inverse_text_processing.py.
|
To view other examples please check tests/pipelines/test_inverse_text_processing.py.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, model: Union[Model, str] = None, **kwargs):
|
def __init__(self, model: Union[Model, str] = None, **kwargs):
|
||||||
|
|||||||
@@ -84,8 +84,8 @@ def resize(input,
|
|||||||
eps = fw.finfo(fw.float32).eps
|
eps = fw.finfo(fw.float32).eps
|
||||||
device = input.device if fw is torch else None
|
device = input.device if fw is torch else None
|
||||||
|
|
||||||
# set missing scale factors or output shapem one according to another,
|
# set missing scale factors or output shape one according to another,
|
||||||
# scream if both missing. this is also where all the defults policies
|
# scream if both missing. this is also where all the defaults policies
|
||||||
# take place. also handling the by_convs attribute carefully.
|
# take place. also handling the by_convs attribute carefully.
|
||||||
scale_factors, out_shape, by_convs = set_scale_and_out_sz(
|
scale_factors, out_shape, by_convs = set_scale_and_out_sz(
|
||||||
in_shape, out_shape, scale_factors, by_convs, scale_tolerance,
|
in_shape, out_shape, scale_factors, by_convs, scale_tolerance,
|
||||||
@@ -155,15 +155,15 @@ def resize(input,
|
|||||||
|
|
||||||
|
|
||||||
def get_projected_grid(in_sz, out_sz, scale_factor, fw, by_convs, device=None):
|
def get_projected_grid(in_sz, out_sz, scale_factor, fw, by_convs, device=None):
|
||||||
# we start by having the ouput coordinates which are just integer locations
|
# we start by having the output coordinates which are just integer locations
|
||||||
# in the special case when usin by_convs, we only need two cycles of grid
|
# in the special case when using by_convs, we only need two cycles of grid
|
||||||
# points. the first and last.
|
# points. the first and last.
|
||||||
grid_sz = out_sz if not by_convs else scale_factor.numerator
|
grid_sz = out_sz if not by_convs else scale_factor.numerator
|
||||||
out_coordinates = fw_arange(grid_sz, fw, device)
|
out_coordinates = fw_arange(grid_sz, fw, device)
|
||||||
|
|
||||||
# This is projecting the ouput pixel locations in 1d to the input tensor,
|
# This is projecting the output pixel locations in 1d to the input tensor,
|
||||||
# as non-integer locations.
|
# as non-integer locations.
|
||||||
# the following fomrula is derived in the paper
|
# the following formula is derived in the paper
|
||||||
# "From Discrete to Continuous Convolutions" by Shocher et al.
|
# "From Discrete to Continuous Convolutions" by Shocher et al.
|
||||||
v1 = out_coordinates / float(scale_factor) + (in_sz - 1) / 2
|
v1 = out_coordinates / float(scale_factor) + (in_sz - 1) / 2
|
||||||
v2 = (out_sz - 1) / (2 * float(scale_factor))
|
v2 = (out_sz - 1) / (2 * float(scale_factor))
|
||||||
|
|||||||
@@ -155,7 +155,7 @@ class GridVlpPipeline(Pipeline):
|
|||||||
Tasks.visual_question_answering,
|
Tasks.visual_question_answering,
|
||||||
module_name=Pipelines.gridvlp_multi_modal_classification)
|
module_name=Pipelines.gridvlp_multi_modal_classification)
|
||||||
class GridVlpClassificationPipeline(GridVlpPipeline):
|
class GridVlpClassificationPipeline(GridVlpPipeline):
|
||||||
""" Pipeline for gridvlp classification, including cate classfication and
|
""" Pipeline for gridvlp classification, including cate classification and
|
||||||
brand classification.
|
brand classification.
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
@@ -174,7 +174,7 @@ class GridVlpClassificationPipeline(GridVlpPipeline):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, model_name_or_path: str, **kwargs):
|
def __init__(self, model_name_or_path: str, **kwargs):
|
||||||
""" Pipeline for gridvlp classification, including cate classfication and
|
""" Pipeline for gridvlp classification, including cate classification and
|
||||||
brand classification.
|
brand classification.
|
||||||
Args:
|
Args:
|
||||||
model: path to local model directory.
|
model: path to local model directory.
|
||||||
|
|||||||
@@ -49,7 +49,7 @@ class CanmtTranslationPipeline(Pipeline):
|
|||||||
>>> # Or use the list input:
|
>>> # Or use the list input:
|
||||||
>>> print(pipeline_ins([sentence1])
|
>>> print(pipeline_ins([sentence1])
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_canmt_translation.py.
|
To view other examples please check tests/pipelines/test_canmt_translation.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
@@ -415,7 +415,7 @@ def get_rank(guess_item, gold_item, k, rank_keys, verbose=False):
|
|||||||
f'for a robust recall@{k} computation (you provided {len(guess_ids)} item(s)).'
|
f'for a robust recall@{k} computation (you provided {len(guess_ids)} item(s)).'
|
||||||
)
|
)
|
||||||
|
|
||||||
# 3. rank by gruping pages in each evidence set (each evidence set count as 1),
|
# 3. rank by grouping pages in each evidence set (each evidence set count as 1),
|
||||||
# the position in the rank of each evidence set is given by the last page in guess_ids
|
# the position in the rank of each evidence set is given by the last page in guess_ids
|
||||||
# non evidence pages counts as 1
|
# non evidence pages counts as 1
|
||||||
rank = []
|
rank = []
|
||||||
|
|||||||
@@ -55,7 +55,7 @@ class FillMaskPipeline(Pipeline):
|
|||||||
NOTE2: Please pay attention to the model's special tokens.
|
NOTE2: Please pay attention to the model's special tokens.
|
||||||
If bert based model(bert, structbert, etc.) is used, the mask token is '[MASK]'.
|
If bert based model(bert, structbert, etc.) is used, the mask token is '[MASK]'.
|
||||||
If the xlm-roberta(xlm-roberta, veco, etc.) based model is used, the mask token is '<mask>'.
|
If the xlm-roberta(xlm-roberta, veco, etc.) based model is used, the mask token is '<mask>'.
|
||||||
To view other examples plese check tests/pipelines/test_fill_mask.py.
|
To view other examples please check tests/pipelines/test_fill_mask.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
@@ -48,7 +48,7 @@ class NamedEntityRecognitionPipeline(TokenClassificationPipeline):
|
|||||||
>>> input = '这与温岭市新河镇的一个神秘的传说有关。'
|
>>> input = '这与温岭市新河镇的一个神秘的传说有关。'
|
||||||
>>> print(pipeline_ins(input))
|
>>> print(pipeline_ins(input))
|
||||||
|
|
||||||
To view other examples plese check the tests/pipelines/test_plugin_model.py.
|
To view other examples please check the tests/pipelines/test_plugin_model.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
@@ -60,7 +60,7 @@ class SiameseUiePipeline(Pipeline):
|
|||||||
>>> sentence = '1944年毕业于北大的名古屋铁道会长谷口清太郎等人在日本积极筹资,共筹款2.7亿日元,参加捐款的日本企业有69家。'
|
>>> sentence = '1944年毕业于北大的名古屋铁道会长谷口清太郎等人在日本积极筹资,共筹款2.7亿日元,参加捐款的日本企业有69家。'
|
||||||
>>> print(pipeline_ins(sentence, schema={'人物': None, '地理位置': None, '组织机构': None}))
|
>>> print(pipeline_ins(sentence, schema={'人物': None, '地理位置': None, '组织机构': None}))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_siamese_uie.py.
|
To view other examples please check tests/pipelines/test_siamese_uie.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
@@ -43,7 +43,7 @@ class TextErrorCorrectionPipeline(Pipeline):
|
|||||||
>>> sentence1 = '随着中国经济突飞猛近,建造工业与日俱增'
|
>>> sentence1 = '随着中国经济突飞猛近,建造工业与日俱增'
|
||||||
>>> print(pipeline_ins(sentence1))
|
>>> print(pipeline_ins(sentence1))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_text_error_correction.py.
|
To view other examples please check tests/pipelines/test_text_error_correction.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
@@ -64,7 +64,7 @@ class TextGenerationPipeline(Pipeline, PipelineStreamingOutputMixin):
|
|||||||
>>> # Or use the dict input:
|
>>> # Or use the dict input:
|
||||||
>>> print(pipeline_ins({'sentence': sentence1}))
|
>>> print(pipeline_ins({'sentence': sentence1}))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_text_generation.py.
|
To view other examples please check tests/pipelines/test_text_generation.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
@@ -517,7 +517,7 @@ class Llama2TaskPipeline(TextGenerationPipeline):
|
|||||||
>>> temperature=1.0, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
|
>>> temperature=1.0, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
|
||||||
>>> print(result['text'])
|
>>> print(result['text'])
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_llama2_text_generation_pipeline.py.
|
To view other examples please check tests/pipelines/test_llama2_text_generation_pipeline.py.
|
||||||
"""
|
"""
|
||||||
self.model = Model.from_pretrained(
|
self.model = Model.from_pretrained(
|
||||||
model, device_map='auto', torch_dtype=torch.float16)
|
model, device_map='auto', torch_dtype=torch.float16)
|
||||||
@@ -604,7 +604,7 @@ class Llama2chatTaskPipeline(Pipeline):
|
|||||||
>>> pad_token_id=0, history=history_demo)
|
>>> pad_token_id=0, history=history_demo)
|
||||||
>>> print(result['response'])
|
>>> print(result['response'])
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_llama2_text_generation_pipeline.py.
|
To view other examples please check tests/pipelines/test_llama2_text_generation_pipeline.py.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
|
|||||||
@@ -35,7 +35,7 @@ class WordSegmentationPipeline(TokenClassificationPipeline):
|
|||||||
>>> sentence1 = '今天天气不错,适合出去游玩'
|
>>> sentence1 = '今天天气不错,适合出去游玩'
|
||||||
>>> print(pipeline_ins(sentence1))
|
>>> print(pipeline_ins(sentence1))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_word_segmentation.py.
|
To view other examples please check tests/pipelines/test_word_segmentation.py.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def postprocess(self,
|
def postprocess(self,
|
||||||
|
|||||||
@@ -59,7 +59,7 @@ class ZeroShotClassificationPipeline(Pipeline):
|
|||||||
>>> template = '这篇文章的标题是{}'
|
>>> template = '这篇文章的标题是{}'
|
||||||
>>> print(pipeline_ins(sentence1, candidate_labels=labels, hypothesis_template=template))
|
>>> print(pipeline_ins(sentence1, candidate_labels=labels, hypothesis_template=template))
|
||||||
|
|
||||||
To view other examples plese check tests/pipelines/test_zero_shot_classification.py.
|
To view other examples please check tests/pipelines/test_zero_shot_classification.py.
|
||||||
"""
|
"""
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model=model,
|
model=model,
|
||||||
|
|||||||
Reference in New Issue
Block a user