diff --git a/README.md b/README.md index ab0fe0fc..e62059a8 100644 --- a/README.md +++ b/README.md @@ -37,9 +37,10 @@ The Python library offers the layered-APIs necessary for model contributors to i Apart from harboring implementations of various models, ModelScope library also enables the necessary interactions with ModelScope backend services, particularly with the Model-Hub and Dataset-Hub. Such interactions facilitate management of various entities (models and datasets) to be performed seamlessly under-the-hood, including entity lookup, version control, cache management, and many others. # Models and Online Demos -ModelScope has open-sourced more than 600 models, covering NLP, CV, Audio, Multi-modality, and AI for Science, etc., and also contains hundreds of SOTA models. Users can enter the modelhub of ModelScope through Zero-threshold online experience, or experience the model in the way of developing a cloud environment. -Here are some examples: +Hundreds of models are made publicly available on ModelScope (600+ and counting), covering the latest development in areas such as NLP, CV, Audio, Multi-modality, and AI for Science, etc. Many of these models represent the SOTA in the fields, and made their open-sourced debut on ModelScope. Users can visit ModelScope([modelscope.cn](http://www.modelscope.cn)) and experience first-hand how these models perform via online experience, with just a few clicks. Immediate developer-experience is also possible through the ModelScope Notebook, which is backed by ready-to-use cloud CPU/GPU development environment, and is only a click away on ModelScope website. + +Some of the representative examples include: NLP: @@ -113,7 +114,8 @@ AI for Science: We provide unified interface for inference using `pipeline`, finetuning and evaluation using `Trainer` for different tasks. -For any tasks with any type of input(image, text, audio, video...), you need only 3 lines of code to load model and get the inference result as follows: +For any given task with any type of input (image, text, audio, video...), inference pipeline can be implemented with only a few lines of code, which will automatically load the associated model to get inference result, as is exemplified below: + ```python >>> from modelscope.pipelines import pipeline >>> word_segmentation = pipeline('word-segmentation',model='damo/nlp_structbert_word-segmentation_chinese-base') @@ -139,6 +141,8 @@ The output image is For finetuning and evaluation, you need ten more lines of code to construct dataset and trainer, and by calling `traner.train()` and `trainer.evaluate()` you can finish finetuning and evaluating a certain model. +For example, we use the gpt3 1.3B model to load the chinese poetry dataset and finetune the model, the resulted model can be used for poetry generation. + ```python >>> from modelscope.metainfo import Trainers >>> from modelscope.msdatasets import MsDataset diff --git a/README_zh.md b/README_zh.md index 4dc22c7b..a5dcbbfa 100644 --- a/README_zh.md +++ b/README_zh.md @@ -37,7 +37,13 @@ ModelScope Library为模型贡献者提供了必要的分层API,以便将来 除了包含各种模型的实现之外,ModelScope Library还支持与ModelScope后端服务进行必要的交互,特别是与Model-Hub和Dataset-Hub的交互。这种交互促进了模型和数据集的管理在后台无缝执行,包括模型数据集查询、版本控制、缓存管理等。 # 部分模型和在线体验 -ModelScope开源了600多个模型,涵盖自然语言处理、计算机视觉、语音、多模态、科学计算等,还包含数百个SOTA模型。用户可以进入ModelScope的模型中心零门槛在线体验,或者Notebook方式体验模型。 +ModelScope开源了数百个(当前600+)模型,涵盖自然语言处理、计算机视觉、语音、多模态、科学计算等,其中包含数百个SOTA模型。用户可以进入ModelScope网站([modelscope.cn](http://www.modelscope.cn))的模型中心零门槛在线体验,或者Notebook方式体验模型。 + +

+
+ +
+

示例如下: @@ -136,8 +142,9 @@ ModelScope开源了600多个模型,涵盖自然语言处理、计算机视觉 输出图像如下 ![image](https://resouces.modelscope.cn/document/docdata/2023-2-16_20:53/dist/ModelScope%20Library%E6%95%99%E7%A8%8B/resources/1656989768092-5470f8ac-cda8-4703-ac98-dbb6fd675b34.png) -对于微调和评估模型, 你需要通过十多行代码构建dataset和trainer,调用`trainer.train()`和`trainer.evaluate()`即可. +对于微调和评估模型, 你需要通过十多行代码构建dataset和trainer,调用`trainer.train()`和`trainer.evaluate()`即可。 +例如我们利用gpt3 1.3B的模型,加载是诗歌数据集进行finetune,可以完成古诗生成模型的训练。 ```python >>> from modelscope.metainfo import Trainers >>> from modelscope.msdatasets import MsDataset