mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 04:29:22 +01:00
add vision_efficient_tuning models
1)新增任务:vision_efficient_tuning; 2)新增该任务下四个模型: vision_efficient_tuning_adapter、 vision_efficient_tuning_prefix、 vision_efficient_tuning_prompt、 vision_efficient_tuning_lora Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11575894
This commit is contained in:
committed by
wenmeng.zwm
parent
b34e2cad86
commit
9faf588bc6
37
tests/pipelines/test_vision_efficient_tuning_adapter.py
Normal file
37
tests/pipelines/test_vision_efficient_tuning_adapter.py
Normal file
@@ -0,0 +1,37 @@
|
||||
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import unittest
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.cv.vision_efficient_tuning.vision_efficient_tuning import \
|
||||
VisionEfficientTuningModel
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class VisionEfficientTuningAdapterTest(unittest.TestCase,
|
||||
DemoCompatibilityCheck):
|
||||
|
||||
def setUp(self) -> None:
|
||||
self.task = Tasks.vision_efficient_tuning
|
||||
self.model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_pipeline(self):
|
||||
|
||||
petl_pipeline = pipeline(self.task, self.model_id)
|
||||
result = petl_pipeline(
|
||||
'data/test/images/vision_efficient_tuning_test_1.png')
|
||||
|
||||
print(f'Vision-efficient-tuning-adapter output: {result}.')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_load_model_from_pretrained(self):
|
||||
model = Model.from_pretrained(
|
||||
'damo/cv_vitb16_classification_vision-efficient-tuning-adapter')
|
||||
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
36
tests/pipelines/test_vision_efficient_tuning_lora.py
Normal file
36
tests/pipelines/test_vision_efficient_tuning_lora.py
Normal file
@@ -0,0 +1,36 @@
|
||||
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import unittest
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.cv.vision_efficient_tuning.vision_efficient_tuning import \
|
||||
VisionEfficientTuningModel
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class VisionEfficientTuningLoRATest(unittest.TestCase, DemoCompatibilityCheck):
|
||||
|
||||
def setUp(self) -> None:
|
||||
self.task = Tasks.vision_efficient_tuning
|
||||
self.model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_pipeline(self):
|
||||
|
||||
petl_pipeline = pipeline(self.task, self.model_id)
|
||||
result = petl_pipeline(
|
||||
'data/test/images/vision_efficient_tuning_test_1.png')
|
||||
|
||||
print(f'Vision-efficient-tuning-lora output: {result}.')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_load_model_from_pretrained(self):
|
||||
model = Model.from_pretrained(
|
||||
'damo/cv_vitb16_classification_vision-efficient-tuning-lora')
|
||||
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
37
tests/pipelines/test_vision_efficient_tuning_prefix.py
Normal file
37
tests/pipelines/test_vision_efficient_tuning_prefix.py
Normal file
@@ -0,0 +1,37 @@
|
||||
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import unittest
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.cv.vision_efficient_tuning.vision_efficient_tuning import \
|
||||
VisionEfficientTuningModel
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class VisionEfficientTuningPrefixTest(unittest.TestCase,
|
||||
DemoCompatibilityCheck):
|
||||
|
||||
def setUp(self) -> None:
|
||||
self.task = Tasks.vision_efficient_tuning
|
||||
self.model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix'
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_pipeline(self):
|
||||
|
||||
petl_pipeline = pipeline(self.task, self.model_id)
|
||||
result = petl_pipeline(
|
||||
'data/test/images/vision_efficient_tuning_test_1.png')
|
||||
|
||||
print(f'Vision-efficient-tuning-prefix output: {result}.')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_load_model_from_pretrained(self):
|
||||
model = Model.from_pretrained(
|
||||
'damo/cv_vitb16_classification_vision-efficient-tuning-prefix')
|
||||
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
37
tests/pipelines/test_vision_efficient_tuning_prompt.py
Normal file
37
tests/pipelines/test_vision_efficient_tuning_prompt.py
Normal file
@@ -0,0 +1,37 @@
|
||||
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
||||
import unittest
|
||||
|
||||
from modelscope.models import Model
|
||||
from modelscope.models.cv.vision_efficient_tuning.vision_efficient_tuning import \
|
||||
VisionEfficientTuningModel
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||||
from modelscope.utils.test_utils import test_level
|
||||
|
||||
|
||||
class VisionEfficientTuningPromptTest(unittest.TestCase,
|
||||
DemoCompatibilityCheck):
|
||||
|
||||
def setUp(self) -> None:
|
||||
self.task = Tasks.vision_efficient_tuning
|
||||
self.model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
|
||||
|
||||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||||
def test_run_pipeline(self):
|
||||
|
||||
petl_pipeline = pipeline(self.task, self.model_id)
|
||||
result = petl_pipeline(
|
||||
'data/test/images/vision_efficient_tuning_test_1.png')
|
||||
|
||||
print(f'Vision-efficient-tuning-prompt output: {result}.')
|
||||
|
||||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||||
def test_load_model_from_pretrained(self):
|
||||
model = Model.from_pretrained(
|
||||
'damo/cv_vitb16_classification_vision-efficient-tuning-prompt')
|
||||
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user