From 9b8cfc4ecefb96696ca673e0775dbc46930ae84e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=BF=8E=E8=88=AA?= Date: Thu, 20 Oct 2022 22:32:41 +0800 Subject: [PATCH] modify ofatrainer --- .../trainers/multi_modal/ofa/ofa_trainer.py | 15 ++++---- tests/trainers/test_ofa_trainer.py | 35 +++++++++++++++++-- 2 files changed, 40 insertions(+), 10 deletions(-) diff --git a/modelscope/trainers/multi_modal/ofa/ofa_trainer.py b/modelscope/trainers/multi_modal/ofa/ofa_trainer.py index 3daadf43..474a6772 100644 --- a/modelscope/trainers/multi_modal/ofa/ofa_trainer.py +++ b/modelscope/trainers/multi_modal/ofa/ofa_trainer.py @@ -24,12 +24,13 @@ from .ofa_trainer_utils import (AdjustLabelSmoothedCrossEntropyCriterion, @TRAINERS.register_module(module_name=Trainers.ofa_tasks) class OFATrainer(EpochBasedTrainer): - def __init__(self, model: str, *args, **kwargs): + def __init__(self, model: str, cfg_file, work_dir, train_dataset, + eval_dataset, *args, **kwargs): model = Model.from_pretrained(model) model_dir = model.model_dir - cfg_file = os.path.join(model_dir, ModelFile.CONFIGURATION) + # cfg_file = os.path.join(model_dir, ModelFile.CONFIGURATION) cfg = Config.from_file(cfg_file) - dataset = self._build_dataset_with_config(cfg) + # dataset = self._build_dataset_with_config(cfg) preprocessor = { ConfigKeys.train: OfaPreprocessor( @@ -41,7 +42,7 @@ class OFATrainer(EpochBasedTrainer): # use torchrun launch world_size = int(os.environ.get('WORLD_SIZE', 1)) epoch_steps = math.ceil( - len(dataset['train']) / # noqa + len(train_dataset) / # noqa (cfg.train.dataloader.batch_size_per_gpu * world_size)) # noqa cfg.train.lr_scheduler.num_train_steps = epoch_steps * cfg.train.max_epochs cfg.train.criterion.tokenizer = model.tokenizer @@ -68,11 +69,11 @@ class OFATrainer(EpochBasedTrainer): cfg_file=cfg_file, model=model, data_collator=collator, - train_dataset=dataset['train'], - eval_dataset=dataset['valid'], + train_dataset=train_dataset, + eval_dataset=eval_dataset, preprocessor=preprocessor, optimizers=(optimizer, lr_scheduler), - work_dir=cfg.train.work_dir, + work_dir=work_dir, *args, **kwargs, ) diff --git a/tests/trainers/test_ofa_trainer.py b/tests/trainers/test_ofa_trainer.py index 8aab3544..3322271d 100644 --- a/tests/trainers/test_ofa_trainer.py +++ b/tests/trainers/test_ofa_trainer.py @@ -3,22 +3,51 @@ import glob import os import os.path as osp import shutil +import tempfile import unittest from modelscope.metainfo import Trainers +from modelscope.msdatasets import MsDataset from modelscope.trainers import build_trainer +from modelscope.utils.constant import DownloadMode from modelscope.utils.test_utils import test_level class TestOfaTrainer(unittest.TestCase): + def setUp(self): + column_map = {'premise': 'text', 'hypothesis': 'text2'} + data_train = MsDataset.load( + dataset_name='glue', + subset_name='mnli', + namespace='modelscope', + split='train[:100]', + download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) + self.train_dataset = MsDataset.from_hf_dataset( + data_train._hf_ds.rename_columns(column_map)) + data_eval = MsDataset.load( + dataset_name='glue', + subset_name='mnli', + namespace='modelscope', + split='validation_matched[:8]', + download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) + self.test_dataset = MsDataset.from_hf_dataset( + data_eval._hf_ds.rename_columns(column_map)) + @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_trainer(self): os.environ['LOCAL_RANK'] = '0' model_id = 'damo/ofa_text-classification_mnli_large_en' - default_args = {'model': model_id} - trainer = build_trainer( - name=Trainers.ofa_tasks, default_args=default_args) + + kwargs = dict( + model=model_id, + cfg_file= + '/Users/running_you/.cache/modelscope/hub/damo/ofa_text-classification_mnli_large_en//configuration.json', + train_dataset=self.train_dataset, + eval_dataset=self.test_dataset, + work_dir='/Users/running_you/.cache/modelscope/hub/work/mnli') + + trainer = build_trainer(name=Trainers.ofa_tasks, default_args=kwargs) os.makedirs(trainer.work_dir, exist_ok=True) trainer.train() assert len(