diff --git a/modelscope/trainers/multi_modal/custom_diffusion/custom_diffusion_trainer.py b/modelscope/trainers/multi_modal/custom_diffusion/custom_diffusion_trainer.py index 1183c167..a18b546e 100644 --- a/modelscope/trainers/multi_modal/custom_diffusion/custom_diffusion_trainer.py +++ b/modelscope/trainers/multi_modal/custom_diffusion/custom_diffusion_trainer.py @@ -40,7 +40,8 @@ class CustomCheckpointProcessor(CheckpointProcessor): def __init__(self, modifier_token, modifier_token_id, - torch_type=torch.float32): + torch_type=torch.float32, + safe_serialization=False): """Checkpoint processor for custom diffusion. Args: diff --git a/modelscope/version.py b/modelscope/version.py index 0a98fac3..46db9e93 100644 --- a/modelscope/version.py +++ b/modelscope/version.py @@ -1,5 +1,5 @@ # Make sure to modify __release_datetime__ to release time when making official release. -__version__ = '1.9.0rc0' +__version__ = '1.9.0' # default release datetime for branches under active development is set # to be a time far-far-away-into-the-future -__release_datetime__ = '2023-09-03 00:00:00' +__release_datetime__ = '2023-09-06 00:00:00' diff --git a/tests/pipelines/test_face_emotion.py b/tests/pipelines/test_face_emotion.py index 96fe51a7..b0070edc 100644 --- a/tests/pipelines/test_face_emotion.py +++ b/tests/pipelines/test_face_emotion.py @@ -11,7 +11,7 @@ class FaceEmotionTest(unittest.TestCase): def setUp(self) -> None: self.model = 'damo/cv_face-emotion' - self.img = {'img_path': 'data/test/images/face_emotion.jpg'} + self.img = 'data/test/images/face_emotion.jpg' def pipeline_inference(self, pipeline: Pipeline, input: str): result = pipeline(input) diff --git a/tests/pipelines/test_hand_static.py b/tests/pipelines/test_hand_static.py index 37181899..ae18c1d7 100644 --- a/tests/pipelines/test_hand_static.py +++ b/tests/pipelines/test_hand_static.py @@ -11,7 +11,7 @@ class HandStaticTest(unittest.TestCase): def setUp(self) -> None: self.model = 'damo/cv_mobileface_hand-static' - self.input = {'img_path': 'data/test/images/hand_static.jpg'} + self.input = 'data/test/images/hand_static.jpg' def pipeline_inference(self, pipeline: Pipeline, input: str): result = pipeline(input)