diff --git a/modelscope/models/nlp/__init__.py b/modelscope/models/nlp/__init__.py index adfd57e6..1dd32621 100644 --- a/modelscope/models/nlp/__init__.py +++ b/modelscope/models/nlp/__init__.py @@ -1,4 +1,5 @@ from .bert_for_sequence_classification import * # noqa F403 +from .masked_language_model import * # noqa F403 from .nli_model import * # noqa F403 from .palm_for_text_generation import * # noqa F403 from .sbert_for_sentence_similarity import * # noqa F403 diff --git a/modelscope/models/nlp/masked_language_model.py b/modelscope/models/nlp/masked_language_model.py new file mode 100644 index 00000000..514c72c7 --- /dev/null +++ b/modelscope/models/nlp/masked_language_model.py @@ -0,0 +1,50 @@ +from typing import Any, Dict, Optional, Union + +import numpy as np + +from ...utils.constant import Tasks +from ..base import Model, Tensor +from ..builder import MODELS + +__all__ = ['StructBertForMaskedLM', 'VecoForMaskedLM'] + + +class AliceMindBaseForMaskedLM(Model): + + def __init__(self, model_dir: str, *args, **kwargs): + from sofa.utils.backend import AutoConfig, AutoModelForMaskedLM + self.model_dir = model_dir + super().__init__(model_dir, *args, **kwargs) + + self.config = AutoConfig.from_pretrained(model_dir) + self.model = AutoModelForMaskedLM.from_pretrained( + model_dir, config=self.config) + + def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, np.ndarray]: + """return the result by the model + + Args: + input (Dict[str, Any]): the preprocessed data + + Returns: + Dict[str, np.ndarray]: results + """ + rst = self.model( + input_ids=inputs['input_ids'], + attention_mask=inputs['attention_mask'], + token_type_ids=inputs['token_type_ids']) + return {'logits': rst['logits'], 'input_ids': inputs['input_ids']} + + +@MODELS.register_module(Tasks.fill_mask, module_name=r'sbert') +class StructBertForMaskedLM(AliceMindBaseForMaskedLM): + # The StructBert for MaskedLM uses the same underlying model structure + # as the base model class. + pass + + +@MODELS.register_module(Tasks.fill_mask, module_name=r'veco') +class VecoForMaskedLM(AliceMindBaseForMaskedLM): + # The Veco for MaskedLM uses the same underlying model structure + # as the base model class. + pass diff --git a/modelscope/pipelines/builder.py b/modelscope/pipelines/builder.py index 0c48e204..04f9d845 100644 --- a/modelscope/pipelines/builder.py +++ b/modelscope/pipelines/builder.py @@ -38,6 +38,7 @@ DEFAULT_MODEL_FOR_PIPELINE = { 'damo/cv_unet_person-image-cartoon_compound-models'), Tasks.ocr_detection: ('ocr-detection', 'damo/cv_resnet18_ocr-detection-line-level_damo'), + Tasks.fill_mask: ('veco', 'damo/nlp_veco_fill-mask_large') } diff --git a/modelscope/pipelines/nlp/__init__.py b/modelscope/pipelines/nlp/__init__.py index cacfe9a9..090e1384 100644 --- a/modelscope/pipelines/nlp/__init__.py +++ b/modelscope/pipelines/nlp/__init__.py @@ -1,3 +1,4 @@ +from .fill_mask_pipeline import * # noqa F403 from .nli_pipeline import * # noqa F403 from .sentence_similarity_pipeline import * # noqa F403 from .sentiment_classification_pipeline import * # noqa F403 diff --git a/modelscope/pipelines/nlp/fill_mask_pipeline.py b/modelscope/pipelines/nlp/fill_mask_pipeline.py new file mode 100644 index 00000000..d7c1d456 --- /dev/null +++ b/modelscope/pipelines/nlp/fill_mask_pipeline.py @@ -0,0 +1,93 @@ +from typing import Dict, Optional, Union + +from modelscope.models import Model +from modelscope.models.nlp.masked_language_model import \ + AliceMindBaseForMaskedLM +from modelscope.preprocessors import FillMaskPreprocessor +from modelscope.utils.constant import Tasks +from ..base import Pipeline, Tensor +from ..builder import PIPELINES + +__all__ = ['FillMaskPipeline'] + + +@PIPELINES.register_module(Tasks.fill_mask, module_name=r'sbert') +@PIPELINES.register_module(Tasks.fill_mask, module_name=r'veco') +class FillMaskPipeline(Pipeline): + + def __init__(self, + model: Union[AliceMindBaseForMaskedLM, str], + preprocessor: Optional[FillMaskPreprocessor] = None, + **kwargs): + """use `model` and `preprocessor` to create a nlp fill mask pipeline for prediction + + Args: + model (AliceMindBaseForMaskedLM): a model instance + preprocessor (FillMaskPreprocessor): a preprocessor instance + """ + fill_mask_model = model if isinstance( + model, AliceMindBaseForMaskedLM) else Model.from_pretrained(model) + if preprocessor is None: + preprocessor = FillMaskPreprocessor( + fill_mask_model.model_dir, + first_sequence='sentence', + second_sequence=None) + super().__init__(model=model, preprocessor=preprocessor, **kwargs) + self.preprocessor = preprocessor + self.tokenizer = preprocessor.tokenizer + self.mask_id = {'veco': 250001, 'sbert': 103} + + self.rep_map = { + 'sbert': { + '[unused0]': '', + '[PAD]': '', + '[unused1]': '', + r' +': ' ', + '[SEP]': '', + '[unused2]': '', + '[CLS]': '', + '[UNK]': '' + }, + 'veco': { + r' +': ' ', + '': '', + '': '', + '': '', + '': '', + '': ' ' + } + } + + def postprocess(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: + """process the prediction results + + Args: + inputs (Dict[str, Any]): _description_ + + Returns: + Dict[str, str]: the prediction results + """ + import numpy as np + logits = inputs['logits'].detach().numpy() + input_ids = inputs['input_ids'].detach().numpy() + pred_ids = np.argmax(logits, axis=-1) + model_type = self.model.config.model_type + rst_ids = np.where(input_ids == self.mask_id[model_type], pred_ids, + input_ids) + + def rep_tokens(string, rep_map): + for k, v in rep_map.items(): + string = string.replace(k, v) + return string.strip() + + pred_strings = [] + for ids in rst_ids: # batch + if self.model.config.vocab_size == 21128: # zh bert + pred_string = self.tokenizer.convert_ids_to_tokens(ids) + pred_string = ''.join(pred_string) + else: + pred_string = self.tokenizer.decode(ids) + pred_string = rep_tokens(pred_string, self.rep_map[model_type]) + pred_strings.append(pred_string) + + return {'text': pred_strings} diff --git a/modelscope/pipelines/outputs.py b/modelscope/pipelines/outputs.py index d7bdfd29..6140f726 100644 --- a/modelscope/pipelines/outputs.py +++ b/modelscope/pipelines/outputs.py @@ -76,6 +76,12 @@ TASK_OUTPUTS = { # } Tasks.text_generation: ['text'], + # fill mask result for single sample + # { + # "text": "this is the text which masks filled by model." + # } + Tasks.fill_mask: ['text'], + # word segmentation result for single sample # { # "output": "今天 天气 不错 , 适合 出去 游玩" diff --git a/modelscope/preprocessors/nlp.py b/modelscope/preprocessors/nlp.py index 5da5ebcf..10174133 100644 --- a/modelscope/preprocessors/nlp.py +++ b/modelscope/preprocessors/nlp.py @@ -14,7 +14,7 @@ __all__ = [ 'Tokenize', 'SequenceClassificationPreprocessor', 'TextGenerationPreprocessor', 'ZeroShotClassificationPreprocessor', 'TokenClassifcationPreprocessor', 'NLIPreprocessor', - 'SentimentClassificationPreprocessor' + 'SentimentClassificationPreprocessor', 'FillMaskPreprocessor' ] @@ -311,6 +311,61 @@ class TextGenerationPreprocessor(Preprocessor): rst['input_ids'].append(feature['input_ids']) rst['attention_mask'].append(feature['attention_mask']) + rst['token_type_ids'].append(feature['token_type_ids']) + return {k: torch.tensor(v) for k, v in rst.items()} + + +@PREPROCESSORS.register_module(Fields.nlp) +class FillMaskPreprocessor(Preprocessor): + + def __init__(self, model_dir: str, *args, **kwargs): + """preprocess the data via the vocab.txt from the `model_dir` path + + Args: + model_dir (str): model path + """ + super().__init__(*args, **kwargs) + from sofa.utils.backend import AutoTokenizer + self.model_dir = model_dir + self.first_sequence: str = kwargs.pop('first_sequence', + 'first_sequence') + self.sequence_length = kwargs.pop('sequence_length', 128) + + self.tokenizer = AutoTokenizer.from_pretrained( + model_dir, use_fast=False) + + @type_assert(object, str) + def __call__(self, data: str) -> Dict[str, Any]: + """process the raw input data + + Args: + data (str): a sentence + Example: + 'you are so handsome.' + + Returns: + Dict[str, Any]: the preprocessed data + """ + import torch + + new_data = {self.first_sequence: data} + # preprocess the data for the model input + + rst = {'input_ids': [], 'attention_mask': [], 'token_type_ids': []} + + max_seq_length = self.sequence_length + + text_a = new_data[self.first_sequence] + feature = self.tokenizer( + text_a, + padding='max_length', + truncation=True, + max_length=max_seq_length, + return_token_type_ids=True) + + rst['input_ids'].append(feature['input_ids']) + rst['attention_mask'].append(feature['attention_mask']) + rst['token_type_ids'].append(feature['token_type_ids']) return {k: torch.tensor(v) for k, v in rst.items()} diff --git a/modelscope/utils/constant.py b/modelscope/utils/constant.py index 1b012cd1..be9cb403 100644 --- a/modelscope/utils/constant.py +++ b/modelscope/utils/constant.py @@ -47,7 +47,7 @@ class Tasks(object): table_question_answering = 'table-question-answering' feature_extraction = 'feature-extraction' sentence_similarity = 'sentence-similarity' - fill_mask = 'fill-mask ' + fill_mask = 'fill-mask' summarization = 'summarization' question_answering = 'question-answering' diff --git a/requirements/nlp.txt b/requirements/nlp.txt index 4e146a81..261b9ec5 100644 --- a/requirements/nlp.txt +++ b/requirements/nlp.txt @@ -1 +1 @@ -https://alinlp.alibaba-inc.com/pypi/sofa-1.0.2-py3-none-any.whl +https://alinlp.alibaba-inc.com/pypi/sofa-1.0.3-py3-none-any.whl diff --git a/tests/pipelines/test_fill_mask.py b/tests/pipelines/test_fill_mask.py new file mode 100644 index 00000000..a4d53403 --- /dev/null +++ b/tests/pipelines/test_fill_mask.py @@ -0,0 +1,133 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. +import os +import shutil +import unittest + +from maas_hub.snapshot_download import snapshot_download + +from modelscope.models import Model +from modelscope.models.nlp import StructBertForMaskedLM, VecoForMaskedLM +from modelscope.pipelines import FillMaskPipeline, pipeline +from modelscope.preprocessors import FillMaskPreprocessor +from modelscope.utils.constant import Tasks +from modelscope.utils.hub import get_model_cache_dir +from modelscope.utils.test_utils import test_level + + +class FillMaskTest(unittest.TestCase): + model_id_sbert = { + 'zh': 'damo/nlp_structbert_fill-mask-chinese_large', + 'en': 'damo/nlp_structbert_fill-mask-english_large' + } + model_id_veco = 'damo/nlp_veco_fill-mask_large' + + ori_texts = { + 'zh': + '段誉轻挥折扇,摇了摇头,说道:“你师父是你的师父,你师父可不是我的师父。' + '你师父差得动你,你师父可差不动我。', + 'en': + 'Everything in what you call reality is really just a reflection of your ' + 'consciousness. Your whole universe is just a mirror reflection of your story.' + } + + test_inputs = { + 'zh': + '段誉轻[MASK]折扇,摇了摇[MASK],[MASK]道:“你师父是你的[MASK][MASK],你' + '师父可不是[MASK]的师父。你师父差得动你,你师父可[MASK]不动我。', + 'en': + 'Everything in [MASK] you call reality is really [MASK] a reflection of your ' + '[MASK]. Your [MASK] universe is just a mirror [MASK] of your story.' + } + + @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') + def test_run_by_direct_model_download(self): + # sbert + for language in ['zh', 'en']: + model_dir = snapshot_download(self.model_id_sbert[language]) + preprocessor = FillMaskPreprocessor( + model_dir, first_sequence='sentence', second_sequence=None) + model = StructBertForMaskedLM(model_dir) + pipeline1 = FillMaskPipeline(model, preprocessor) + pipeline2 = pipeline( + Tasks.fill_mask, model=model, preprocessor=preprocessor) + ori_text = self.ori_texts[language] + test_input = self.test_inputs[language] + print( + f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: ' + f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n' + ) + + # veco + model_dir = snapshot_download(self.model_id_veco) + preprocessor = FillMaskPreprocessor( + model_dir, first_sequence='sentence', second_sequence=None) + model = VecoForMaskedLM(model_dir) + pipeline1 = FillMaskPipeline(model, preprocessor) + pipeline2 = pipeline( + Tasks.fill_mask, model=model, preprocessor=preprocessor) + for language in ['zh', 'en']: + ori_text = self.ori_texts[language] + test_input = self.test_inputs[language].replace('[MASK]', '') + print( + f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: ' + f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n' + ) + + @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') + def test_run_with_model_from_modelhub(self): + # sbert + for language in ['zh', 'en']: + print(self.model_id_sbert[language]) + model = Model.from_pretrained(self.model_id_sbert[language]) + preprocessor = FillMaskPreprocessor( + model.model_dir, + first_sequence='sentence', + second_sequence=None) + pipeline_ins = pipeline( + task=Tasks.fill_mask, model=model, preprocessor=preprocessor) + print( + f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: ' + f'{pipeline_ins(self.test_inputs[language])}\n') + + # veco + model = Model.from_pretrained(self.model_id_veco) + preprocessor = FillMaskPreprocessor( + model.model_dir, first_sequence='sentence', second_sequence=None) + pipeline_ins = pipeline( + Tasks.fill_mask, model=model, preprocessor=preprocessor) + for language in ['zh', 'en']: + ori_text = self.ori_texts[language] + test_input = self.test_inputs[language].replace('[MASK]', '') + print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: ' + f'{pipeline_ins(test_input)}\n') + + @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') + def test_run_with_model_name(self): + # veco + pipeline_ins = pipeline(task=Tasks.fill_mask, model=self.model_id_veco) + for language in ['zh', 'en']: + ori_text = self.ori_texts[language] + test_input = self.test_inputs[language].replace('[MASK]', '') + print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: ' + f'{pipeline_ins(test_input)}\n') + + # structBert + language = 'zh' + pipeline_ins = pipeline( + task=Tasks.fill_mask, model=self.model_id_sbert[language]) + print( + f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: ' + f'{pipeline_ins(self.test_inputs[language])}\n') + + @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') + def test_run_with_default_model(self): + pipeline_ins = pipeline(task=Tasks.fill_mask) + language = 'en' + ori_text = self.ori_texts[language] + test_input = self.test_inputs[language].replace('[MASK]', '') + print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: ' + f'{pipeline_ins(test_input)}\n') + + +if __name__ == '__main__': + unittest.main()