2023-07-03 16:19:00 +08:00
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## ChatGLM2 + Lora + Agent\n",
"ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本, 在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上, ChatGLM2-6B 引入了如下新特性:\n",
"\n",
"1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练, 评测结果显示, 相比于初代模型, ChatGLM2-6B 在 MMLU( +23%) 、CEval( +33%) 、GSM8K( +571%) 、BBH( +60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。\n",
"\n",
"2. 更长的上下文:基于 FlashAttention 技术, 我们将基座模型的上下文长度( Context Length) 由 ChatGLM-6B 的 2K 扩展到了 32K, 并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。\n",
"\n",
"3. 更高效的推理:基于 Multi-Query Attention 技术, ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%, INT4 量化下, 6G 显存支持的对话长度由 1K 提升到了 8K。"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Ref: https://modelscope.cn/models/ZhipuAI/chatglm2-6b/summary\n",
"2. 以下脚本可以在2*A10环境下正常运行, 大概占用40G显存\n",
"3. python>=3.8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 配置实验环境\n",
"The following code is copied from baichuan_sft.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
2023-07-15 09:59:53 +08:00
"# !pip install modelscope\n",
2023-07-03 16:19:00 +08:00
"# !pip install numpy pandas matplotlib scikit-learn\n",
"# !pip install transformers datasets\n",
2023-07-15 09:59:53 +08:00
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
"# !pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate\n",
"\n",
2023-07-03 16:19:00 +08:00
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
]
},
{
"cell_type": "code",
2023-07-15 09:59:53 +08:00
"execution_count": 1,
2023-07-03 16:19:00 +08:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2023-07-02 20:34:35,987] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:34:36,464 - modelscope - INFO - PyTorch version 2.0.1 Found.\n",
"2023-07-02 20:34:36,465 - modelscope - INFO - Loading ast index from /home/hackathon/.cache/modelscope/ast_indexer\n",
"2023-07-02 20:34:36,489 - modelscope - INFO - Loading done! Current index file version is 1.6.2, with md5 ddf811ee982377c1357284a2bfda3dec and a total number of 861 components indexed\n",
"2023-07-02 20:34:37,158 - modelscope - INFO - [0, 1]\n",
"2023-07-02 20:34:37,324 - modelscope - INFO - Using device: cuda:0,1\n",
"2023-07-02 20:34:37,326 - modelscope - INFO - Global seed set to 42\n"
]
}
],
"source": [
"from _common import *\n",
2023-07-15 09:59:53 +08:00
"device_ids = [0, 1]\n",
2023-07-03 16:19:00 +08:00
"select_device(device_ids)\n",
"_ = seed_everything(42)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 导入Model, Tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:34:37,660 - modelscope - INFO - Development mode use revision: v1.0.3\n",
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
"The tokenizer class you load from this checkpoint is 'ChatGLMTokenizer'. \n",
"The class this function is called from is 'ChatGLM2Tokenizer'.\n",
"2023-07-02 20:34:38,020 - modelscope - INFO - initialize model from /home/hackathon/.cache/modelscope/hub/ZhipuAI/chatglm2-6b\n",
"Failed to load cpm_kernels:No module named 'cpm_kernels'\n",
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "51826d090fb740e0a7d514e543af843b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:34:45,151 - modelscope - INFO - {'<bos>': 1, '<eos>': 2, '<pad>': 2}\n",
"2023-07-02 20:34:45,152 - modelscope - INFO - bos_token_id: 1, eos_token_id: 2, pad_token_id: 2\n"
]
}
],
"source": [
2023-07-11 17:35:11 +08:00
"WORK_DIR = 'runs/chatglm2'\n",
"LORA_TARGET_MODULES = ['query_key_value']\n",
2023-07-03 16:19:00 +08:00
"#\n",
2023-07-15 09:59:53 +08:00
"model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6')\n",
2023-07-03 16:19:00 +08:00
"model, tokenizer = get_chatglm2_model_tokenizer(model_dir)\n",
2023-07-15 09:59:53 +08:00
"#\n",
"GRADIENT_CHECKPOINTING = True\n",
2023-07-03 16:19:00 +08:00
"if GRADIENT_CHECKPOINTING:\n",
" model.gradient_checkpointing_enable()\n",
2023-07-15 09:59:53 +08:00
" model.enable_input_require_grads()"
2023-07-03 16:19:00 +08:00
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 准备Lora\n",
"The following code is copied from baichun.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:34:45,215 - modelscope - INFO - lora_config: LoRAConfig(rank=8, replace_modules=['query_key_value'], lora_alpha=32, lora_dropout=0.1, merge_weights=True, use_merged_linear=False, enable_lora=None, fan_in_fan_out=False, bias='none', only_lora_trainable=True, pretrained_weights=None)\n",
"2023-07-02 20:34:49,932 - modelscope - INFO - transformer.embedding.word_embeddings.weight: requires_grad=False\n",
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.input_layernorm.weight: requires_grad=False\n",
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.weight: requires_grad=False\n",
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.bias: requires_grad=False\n",
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.lora_A: requires_grad=True\n",
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.lora_B: requires_grad=True\n",
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.dense.weight: requires_grad=False\n",
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.post_attention_layernorm.weight: requires_grad=False\n",
"2023-07-02 20:34:49,935 - modelscope - INFO - transformer.encoder.layers.0.mlp.dense_h_to_4h.weight: requires_grad=False\n",
"2023-07-02 20:34:49,935 - modelscope - INFO - transformer.encoder.layers.0.mlp.dense_4h_to_h.weight: requires_grad=False\n",
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.input_layernorm.weight: requires_grad=False\n",
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.weight: requires_grad=False\n",
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.bias: requires_grad=False\n",
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.lora_A: requires_grad=True\n",
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.lora_B: requires_grad=True\n",
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.dense.weight: requires_grad=False\n",
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.post_attention_layernorm.weight: requires_grad=False\n",
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.mlp.dense_h_to_4h.weight: requires_grad=False\n",
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.mlp.dense_4h_to_h.weight: requires_grad=False\n",
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.2.input_layernorm.weight: requires_grad=False\n",
"2023-07-02 20:34:49,939 - modelscope - INFO - ...\n",
"2023-07-02 20:34:49,941 - modelscope - INFO - ChatGLM2ForConditionalGeneration: 6245.5337M Params (1.9497M Trainable), 0.0000M Buffers.\n",
"2023-07-02 20:34:49,942 - modelscope - INFO - device: cuda:0, dtype: torch.float16\n"
]
},
{
"data": {
"text/plain": [
"ChatGLM2ForConditionalGeneration(\n",
" (transformer): ChatGLMModel(\n",
" (embedding): Embedding(\n",
" (word_embeddings): Embedding(65024, 4096)\n",
" )\n",
" (rotary_pos_emb): RotaryEmbedding()\n",
" (encoder): GLMTransformer(\n",
" (layers): ModuleList(\n",
" (0-27): 28 x GLMBlock(\n",
" (input_layernorm): RMSNorm()\n",
" (self_attention): SelfAttention(\n",
" (query_key_value): Linear(\n",
" in_features=4096, out_features=4608, bias=True\n",
" (lora_dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (core_attention): CoreAttention(\n",
" (attention_dropout): Dropout(p=0.0, inplace=False)\n",
" )\n",
" (dense): Linear(in_features=4096, out_features=4096, bias=False)\n",
" )\n",
" (post_attention_layernorm): RMSNorm()\n",
" (mlp): MLP(\n",
" (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)\n",
" (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)\n",
" )\n",
" )\n",
" )\n",
" (final_layernorm): RMSNorm()\n",
" )\n",
" (output_layer): Linear(in_features=4096, out_features=65024, bias=False)\n",
" )\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"LORA_RANK = 8\n",
"LORA_ALPHA = 32\n",
"LORA_DROPOUT_P = 0.1\n",
"lora_config = LoRAConfig(\n",
2023-08-29 17:27:18 +08:00
" target_modules=LORA_TARGET_MODULES,\n",
" r=LORA_RANK,\n",
2023-07-03 16:19:00 +08:00
" lora_alpha=LORA_ALPHA,\n",
" lora_dropout=LORA_DROPOUT_P)\n",
2023-07-11 17:35:11 +08:00
"logger.info(f'lora_config: {lora_config}')\n",
2023-07-03 16:19:00 +08:00
"Swift.prepare_model(model, lora_config)\n",
"#\n",
"show_freeze_layers(model)\n",
"print_model_info(model)\n",
"_p = list(model.parameters())[100]\n",
2023-07-11 17:35:11 +08:00
"logger.info(f'device: {_p.device}, dtype: {_p.dtype}')\n",
2023-07-03 16:19:00 +08:00
"model.bfloat16()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 导入Dataset\n",
"The following code is copied from baichuan_sft.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:34:50,040 - modelscope - INFO - No subset_name specified, defaulting to the default\n",
"2023-07-02 20:34:50,479 - modelscope - WARNING - Reusing dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
"2023-07-02 20:34:50,479 - modelscope - INFO - Generating dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
"2023-07-02 20:34:50,480 - modelscope - INFO - Reusing cached meta-data file: /home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files/8c9e7b1aa666c8840cb938d877f2b99f\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dac0fb3841854f6f867f0c639c6b2176",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0it [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "beada7f3eb734a6485034e666e60285f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0it [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 5036/5036 [00:12<00:00, 403.83it/s]\n",
"2023-07-02 20:35:03,823 - modelscope - INFO - No subset_name specified, defaulting to the default\n",
"2023-07-02 20:35:04,269 - modelscope - WARNING - Reusing dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
"2023-07-02 20:35:04,270 - modelscope - INFO - Generating dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
"2023-07-02 20:35:04,270 - modelscope - INFO - Reusing cached meta-data file: /home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files/941b733ec0354c2172a3386d8788bb37\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82cacd1b06864eabb4e320a93d41691c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0it [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "37d5dbf851b745fb90b12cb1e4167732",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0it [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 285/285 [00:00<00:00, 380.76it/s]\n",
"2023-07-02 20:35:05,192 - modelscope - INFO - Dataset Token Length: 888.357487±349.060492, min=48.000000, max=2039.000000, size=4982\n",
"2023-07-02 20:35:05,192 - modelscope - INFO - Dataset Token Length: 928.654804±330.133929, min=74.000000, max=1959.000000, size=281\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[INPUT_IDS] 你是达摩院的ModelScopeGPT( 魔搭助手) , 你是个大语言模型, 是2023年达摩院的工程师训练得到的。你有多种能力, 可以通过插件集成魔搭社区的模型api来回复用户的问题, 还能解答用户使用模型遇到的问题和模型知识相关问答。1. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"url\": \"http://109.199.101.10:1485/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
"\n",
"2. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"url\": \"http://9.32.64.200:5873/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
"\n",
"3. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"url\": \"http://54.149.78.185:3979/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本, 根据schema要抽取的内容, 找出其中对应信息, 并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}} \n",
"\n",
"### 用户\n",
"按照给定的schema抽取出下面文本对应的信息\n",
"schema: {\"人物\": null, \"地理位置\": null, \"组织机构\": null}\n",
"近日, 美国政府宣布将对中国1000多种商品加征关税, 并威胁进一步加征关税。 \n",
"\n",
"### 助手\n",
" <|startofthink|>```JSON\n",
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日, 美国政府宣布将对中国1000多种商品加征关税, 并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
"```<|endofthink|>\n",
"\n",
"<|startofexec|>```JSON\n",
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
"```<|endofexec|>\n",
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。\n",
"\n",
"[LABLES] ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日, 美国政府宣布将对中国1000多种商品加征关税, 并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
"```<|endofthink|>\n",
"\n",
"<|startofexec|>```JSON\n",
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
"```<|endofexec|>\n",
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。\n"
]
}
],
"source": [
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
2023-07-11 17:35:11 +08:00
"train_dataset = make_dataset('train', tokenize_function)\n",
"val_dataset = make_dataset('validation', tokenize_function)\n",
2023-07-03 16:19:00 +08:00
"# Data analysis\n",
"stat_dataset(train_dataset)\n",
"stat_dataset(val_dataset)\n",
"data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)\n",
"print_examples(train_dataset[0], tokenizer)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 配置Config\n",
"The following code is copied from baichuan_sft.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:35:05,244 - modelscope - INFO - work_dir: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n"
]
}
],
"source": [
2023-07-11 17:35:11 +08:00
"cfg_file = os.path.join(model_dir, 'configuration.json')\n",
2023-07-03 16:19:00 +08:00
"#\n",
"BATCH_SIZE = 1\n",
"MAX_EPOCHS = 1\n",
"T_max = get_T_max(len(train_dataset), BATCH_SIZE, MAX_EPOCHS, True)\n",
"WORK_DIR = get_work_dir(WORK_DIR)\n",
"EVAL_INTERVAL = 200\n",
"CONFIG = Config({\n",
2023-07-11 17:35:11 +08:00
" 'train': {\n",
" 'dataloader': {\n",
" 'batch_size_per_gpu': BATCH_SIZE,\n",
" 'workers_per_gpu': 1,\n",
" 'shuffle': True,\n",
" 'drop_last': True,\n",
" 'pin_memory': True\n",
2023-07-03 16:19:00 +08:00
" },\n",
2023-07-11 17:35:11 +08:00
" 'max_epochs': MAX_EPOCHS,\n",
" 'work_dir': WORK_DIR,\n",
" 'optimizer': {\n",
" 'type': 'AdamW',\n",
" 'lr': 1e-4,\n",
" 'weight_decay': 0.01,\n",
" 'options': {\n",
" 'cumulative_iters': 16, 'grad_clip': {\n",
" 'norm_type': 2,\n",
" 'max_norm': 2.0\n",
2023-07-03 16:19:00 +08:00
" }\n",
" }\n",
" },\n",
2023-07-11 17:35:11 +08:00
" 'lr_scheduler': {\n",
" 'type': 'CosineAnnealingLR',\n",
" 'T_max': T_max,\n",
" 'eta_min': 1e-5,\n",
" 'options': {\n",
" 'by_epoch': False,\n",
" 'warmup': {\n",
2023-07-03 16:19:00 +08:00
" 'type': 'LinearWarmup',\n",
" 'warmup_ratio': 0.1,\n",
2023-07-11 17:35:11 +08:00
" 'warmup_iters': 200\n",
2023-07-03 16:19:00 +08:00
" }\n",
" }\n",
" },\n",
2023-07-11 17:35:11 +08:00
" 'hooks': [\n",
" {'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1},\n",
" {'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL},\n",
" {'type': 'BestCkptSaverHook',\n",
" 'metric_key': 'acc',\n",
" 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1},\n",
" {'type': 'TextLoggerHook',\n",
" 'by_epoch': True, # Whether EpochBasedTrainer is used\n",
" 'interval': 5},\n",
" {'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5}\n",
2023-07-03 16:19:00 +08:00
" ]\n",
" },\n",
2023-07-11 17:35:11 +08:00
" 'evaluation': {\n",
" 'dataloader': {\n",
" 'batch_size_per_gpu': BATCH_SIZE,\n",
" 'workers_per_gpu': 1,\n",
" 'shuffle': False,\n",
" 'drop_last': False,\n",
" 'pin_memory': True\n",
2023-07-03 16:19:00 +08:00
" },\n",
2023-07-11 17:35:11 +08:00
" 'metrics': [\n",
" {'type': 'my_metric', 'vocab_size': tokenizer.vocab_size}\n",
2023-07-03 16:19:00 +08:00
" ]\n",
" }\n",
"})"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 微调\n",
"The following code is copied from baichuan_sft.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 20:35:05,284 - modelscope - INFO - ==========================Training Config Start==========================\n",
"2023-07-02 20:35:05,285 - modelscope - INFO - {\n",
" \"framework\": \"pytorch\",\n",
" \"task\": \"chat\",\n",
" \"pipeline\": {\n",
" \"type\": \"chatglm26b-text-generation\"\n",
" },\n",
" \"allow_remote\": true,\n",
" \"train\": {\n",
" \"hooks\": [\n",
" {\n",
" \"type\": \"TensorboardHook\",\n",
" \"by_epoch\": false,\n",
" \"interval\": 5\n",
" }\n",
" ],\n",
" \"dataloader\": {\n",
" \"batch_size_per_gpu\": 1,\n",
" \"workers_per_gpu\": 1,\n",
" \"shuffle\": true,\n",
" \"drop_last\": true,\n",
" \"pin_memory\": true\n",
" },\n",
" \"max_epochs\": 1,\n",
" \"work_dir\": \"/home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\",\n",
" \"optimizer\": {\n",
" \"type\": \"AdamW\",\n",
" \"lr\": 0.0001,\n",
" \"weight_decay\": 0.01,\n",
" \"options\": {\n",
" \"cumulative_iters\": 16,\n",
" \"grad_clip\": {\n",
" \"norm_type\": 2,\n",
" \"max_norm\": 2.0\n",
" }\n",
" }\n",
" },\n",
" \"lr_scheduler\": {\n",
" \"type\": \"CosineAnnealingLR\",\n",
" \"T_max\": 4982,\n",
" \"eta_min\": 1e-05,\n",
" \"options\": {\n",
" \"by_epoch\": false,\n",
" \"warmup\": {\n",
" \"type\": \"LinearWarmup\",\n",
" \"warmup_ratio\": 0.1,\n",
" \"warmup_iters\": 200\n",
" }\n",
" }\n",
" },\n",
" \"checkpoint\": {\n",
" \"period\": {\n",
" \"by_epoch\": false,\n",
" \"interval\": 200,\n",
" \"max_checkpoint_num\": 1\n",
" },\n",
" \"best\": {\n",
" \"metric_key\": \"acc\",\n",
" \"save_best\": true,\n",
" \"rule\": \"max\",\n",
" \"max_checkpoint_num\": 1\n",
" }\n",
" },\n",
" \"logging\": {\n",
" \"by_epoch\": true,\n",
" \"interval\": 5\n",
" }\n",
" },\n",
" \"evaluation\": {\n",
" \"dataloader\": {\n",
" \"batch_size_per_gpu\": 1,\n",
" \"workers_per_gpu\": 1,\n",
" \"shuffle\": false,\n",
" \"drop_last\": false,\n",
" \"pin_memory\": true\n",
" },\n",
" \"metrics\": [\n",
" {\n",
" \"type\": \"my_metric\",\n",
" \"vocab_size\": 64794\n",
" }\n",
" ],\n",
" \"period\": {\n",
" \"by_epoch\": false,\n",
" \"interval\": 200\n",
" }\n",
" }\n",
"}\n",
"2023-07-02 20:35:05,285 - modelscope - INFO - ===========================Training Config End===========================\n",
"2023-07-02 20:35:05,286 - modelscope - WARNING - ('OPTIMIZER', 'default', 'AdamW') not found in ast index file\n",
"2023-07-02 20:35:05,287 - modelscope - WARNING - ('LR_SCHEDULER', 'default', 'CosineAnnealingLR') not found in ast index file\n",
"2023-07-02 20:35:05,289 - modelscope - INFO - Stage: before_run:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: before_train_epoch:\n",
" (LOW ) LrSchedulerHook \n",
" -------------------- \n",
"Stage: before_train_iter:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" -------------------- \n",
"Stage: after_train_iter:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" (NORMAL ) EvaluationHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_train_epoch:\n",
" (NORMAL ) EvaluationHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_val_epoch:\n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_run:\n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"2023-07-02 20:35:05,293 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
"2023-07-02 20:35:05,296 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
"2023-07-02 20:35:05,296 - modelscope - INFO - Text logs will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
"2023-07-02 20:35:05,296 - modelscope - INFO - tensorboard files will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/tensorboard_output\n",
"2023-07-02 20:35:09,665 - modelscope - INFO - epoch [1][5/4982]\tlr: 1.000e-05, memory: 9310, loss: 4.4797\n",
"2023-07-02 20:35:11,753 - modelscope - INFO - epoch [1][10/4982]\tlr: 1.000e-05, memory: 9653, loss: 4.4281\n",
"2023-07-02 20:35:15,111 - modelscope - INFO - epoch [1][15/4982]\tlr: 1.000e-05, memory: 11498, loss: 5.4297\n",
"2023-07-02 20:35:18,142 - modelscope - INFO - epoch [1][20/4982]\tlr: 1.225e-05, memory: 12041, loss: 2.6703\n",
"2023-07-02 20:35:21,335 - modelscope - INFO - epoch [1][25/4982]\tlr: 1.450e-05, memory: 12041, loss: 2.5969\n",
"2023-07-02 20:35:24,524 - modelscope - INFO - epoch [1][30/4982]\tlr: 1.675e-05, memory: 12180, loss: 2.7797\n",
"2023-07-02 20:35:27,061 - modelscope - INFO - epoch [1][35/4982]\tlr: 1.900e-05, memory: 12180, loss: 5.0344\n",
"2023-07-02 20:35:29,749 - modelscope - INFO - epoch [1][40/4982]\tlr: 2.125e-05, memory: 12180, loss: 6.1875\n",
"2023-07-02 20:35:32,140 - modelscope - INFO - epoch [1][45/4982]\tlr: 2.350e-05, memory: 12180, loss: 4.5844\n",
"2023-07-02 20:35:35,367 - modelscope - INFO - epoch [1][50/4982]\tlr: 2.575e-05, memory: 12180, loss: 3.3578\n",
"2023-07-02 20:35:37,739 - modelscope - INFO - epoch [1][55/4982]\tlr: 2.800e-05, memory: 12180, loss: 3.0375\n",
"2023-07-02 20:35:41,595 - modelscope - INFO - epoch [1][60/4982]\tlr: 3.025e-05, memory: 12180, loss: 2.7219\n",
"2023-07-02 20:35:44,105 - modelscope - INFO - epoch [1][65/4982]\tlr: 3.250e-05, memory: 12180, loss: 4.8016\n",
"2023-07-02 20:35:46,069 - modelscope - INFO - epoch [1][70/4982]\tlr: 3.475e-05, memory: 12180, loss: 6.9406\n",
"2023-07-02 20:35:48,149 - modelscope - INFO - epoch [1][75/4982]\tlr: 3.700e-05, memory: 12180, loss: 3.2133\n",
"2023-07-02 20:35:50,371 - modelscope - INFO - epoch [1][80/4982]\tlr: 3.925e-05, memory: 12180, loss: 4.3719\n",
"2023-07-02 20:35:53,531 - modelscope - INFO - epoch [1][85/4982]\tlr: 4.150e-05, memory: 12180, loss: 5.8875\n",
"2023-07-02 20:35:55,682 - modelscope - INFO - epoch [1][90/4982]\tlr: 4.375e-05, memory: 12180, loss: 4.9297\n",
"2023-07-02 20:35:57,349 - modelscope - INFO - epoch [1][95/4982]\tlr: 4.600e-05, memory: 12180, loss: 5.8781\n",
"2023-07-02 20:36:00,218 - modelscope - INFO - epoch [1][100/4982]\tlr: 4.825e-05, memory: 12180, loss: 2.4125\n",
"2023-07-02 20:36:02,674 - modelscope - INFO - epoch [1][105/4982]\tlr: 5.050e-05, memory: 12180, loss: 6.7234\n",
"2023-07-02 20:36:05,443 - modelscope - INFO - epoch [1][110/4982]\tlr: 5.275e-05, memory: 12180, loss: 3.7437\n",
"2023-07-02 20:36:08,231 - modelscope - INFO - epoch [1][115/4982]\tlr: 5.500e-05, memory: 12180, loss: 4.5187\n",
"2023-07-02 20:36:10,992 - modelscope - INFO - epoch [1][120/4982]\tlr: 5.725e-05, memory: 12180, loss: 4.3281\n",
"2023-07-02 20:36:12,907 - modelscope - INFO - epoch [1][125/4982]\tlr: 5.950e-05, memory: 12180, loss: 4.4422\n",
"2023-07-02 20:36:16,210 - modelscope - INFO - epoch [1][130/4982]\tlr: 6.175e-05, memory: 12992, loss: 5.8688\n",
"2023-07-02 20:36:18,791 - modelscope - INFO - epoch [1][135/4982]\tlr: 6.400e-05, memory: 12992, loss: 3.2531\n",
"2023-07-02 20:36:19,911 - modelscope - INFO - epoch [1][140/4982]\tlr: 6.625e-05, memory: 12992, loss: 5.1781\n",
"2023-07-02 20:36:22,445 - modelscope - INFO - epoch [1][145/4982]\tlr: 6.850e-05, memory: 12992, loss: 3.4523\n",
"2023-07-02 20:36:24,826 - modelscope - INFO - epoch [1][150/4982]\tlr: 7.075e-05, memory: 12992, loss: 4.6125\n",
"2023-07-02 20:36:26,567 - modelscope - INFO - epoch [1][155/4982]\tlr: 7.300e-05, memory: 12992, loss: 4.0859\n",
"2023-07-02 20:36:29,936 - modelscope - INFO - epoch [1][160/4982]\tlr: 7.525e-05, memory: 12992, loss: 3.4937\n",
"2023-07-02 20:36:32,253 - modelscope - INFO - epoch [1][165/4982]\tlr: 7.750e-05, memory: 12992, loss: 5.8266\n",
"2023-07-02 20:36:34,867 - modelscope - INFO - epoch [1][170/4982]\tlr: 7.975e-05, memory: 12992, loss: 2.7047\n",
"2023-07-02 20:36:38,118 - modelscope - INFO - epoch [1][175/4982]\tlr: 8.200e-05, memory: 12992, loss: 2.5844\n",
"2023-07-02 20:36:40,913 - modelscope - INFO - epoch [1][180/4982]\tlr: 8.425e-05, memory: 12992, loss: 3.9641\n",
"2023-07-02 20:36:43,807 - modelscope - INFO - epoch [1][185/4982]\tlr: 8.650e-05, memory: 12992, loss: 3.1375\n",
"2023-07-02 20:36:46,624 - modelscope - INFO - epoch [1][190/4982]\tlr: 8.875e-05, memory: 12992, loss: 3.8813\n",
"2023-07-02 20:36:49,527 - modelscope - INFO - epoch [1][195/4982]\tlr: 9.100e-05, memory: 12992, loss: 3.6156\n",
"2023-07-02 20:36:51,833 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:05<00:00, 4.29it/s]\n",
"2023-07-02 20:37:57,381 - modelscope - INFO - Saving checkpoint at 200 iter\n",
"2023-07-02 20:37:57,410 - modelscope - INFO - Saving checkpoint at 200 iter\n",
"2023-07-02 20:37:57,436 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 12992, evaluation/acc: 0.6542, evaluation/loss: 3.4747, loss: 4.5406\n",
"2023-07-02 20:38:00,375 - modelscope - INFO - epoch [1][205/4982]\tlr: 9.550e-05, memory: 12992, loss: 3.8125\n",
"2023-07-02 20:38:03,071 - modelscope - INFO - epoch [1][210/4982]\tlr: 9.775e-05, memory: 12992, loss: 4.4109\n",
"2023-07-02 20:38:06,715 - modelscope - INFO - epoch [1][215/4982]\tlr: 1.000e-04, memory: 12992, loss: 2.2437\n",
"2023-07-02 20:38:09,499 - modelscope - INFO - epoch [1][220/4982]\tlr: 9.998e-05, memory: 12992, loss: 3.2750\n",
"2023-07-02 20:38:13,188 - modelscope - INFO - epoch [1][225/4982]\tlr: 9.996e-05, memory: 13730, loss: 3.2656\n",
"2023-07-02 20:38:15,237 - modelscope - INFO - epoch [1][230/4982]\tlr: 9.994e-05, memory: 13730, loss: 4.3750\n",
"2023-07-02 20:38:17,706 - modelscope - INFO - epoch [1][235/4982]\tlr: 9.992e-05, memory: 13730, loss: 3.2844\n",
"2023-07-02 20:38:20,429 - modelscope - INFO - epoch [1][240/4982]\tlr: 9.990e-05, memory: 13730, loss: 2.9766\n",
"2023-07-02 20:38:23,127 - modelscope - INFO - epoch [1][245/4982]\tlr: 9.988e-05, memory: 13730, loss: 4.4125\n",
"2023-07-02 20:38:26,058 - modelscope - INFO - epoch [1][250/4982]\tlr: 9.986e-05, memory: 13730, loss: 2.3047\n",
"2023-07-02 20:38:28,740 - modelscope - INFO - epoch [1][255/4982]\tlr: 9.984e-05, memory: 13730, loss: 3.5484\n",
"2023-07-02 20:38:31,332 - modelscope - INFO - epoch [1][260/4982]\tlr: 9.982e-05, memory: 13730, loss: 4.4297\n",
"2023-07-02 20:38:33,632 - modelscope - INFO - epoch [1][265/4982]\tlr: 9.980e-05, memory: 13730, loss: 5.1078\n",
"2023-07-02 20:38:35,634 - modelscope - INFO - epoch [1][270/4982]\tlr: 9.977e-05, memory: 13730, loss: 4.2250\n",
"2023-07-02 20:38:37,731 - modelscope - INFO - epoch [1][275/4982]\tlr: 9.975e-05, memory: 13730, loss: 4.5984\n",
"2023-07-02 20:38:39,950 - modelscope - INFO - epoch [1][280/4982]\tlr: 9.973e-05, memory: 13730, loss: 4.0594\n",
"2023-07-02 20:38:42,470 - modelscope - INFO - epoch [1][285/4982]\tlr: 9.970e-05, memory: 13730, loss: 2.6523\n",
"2023-07-02 20:38:45,483 - modelscope - INFO - epoch [1][290/4982]\tlr: 9.968e-05, memory: 13730, loss: 2.5766\n",
"2023-07-02 20:38:47,773 - modelscope - INFO - epoch [1][295/4982]\tlr: 9.965e-05, memory: 13730, loss: 2.7078\n",
"2023-07-02 20:38:51,126 - modelscope - INFO - epoch [1][300/4982]\tlr: 9.963e-05, memory: 13730, loss: 5.0844\n",
"2023-07-02 20:38:53,948 - modelscope - INFO - epoch [1][305/4982]\tlr: 9.960e-05, memory: 13730, loss: 3.3844\n",
"2023-07-02 20:38:56,666 - modelscope - INFO - epoch [1][310/4982]\tlr: 9.958e-05, memory: 13730, loss: 3.1812\n",
"2023-07-02 20:38:59,269 - modelscope - INFO - epoch [1][315/4982]\tlr: 9.955e-05, memory: 13730, loss: 3.3219\n",
"2023-07-02 20:39:02,576 - modelscope - INFO - epoch [1][320/4982]\tlr: 9.952e-05, memory: 13730, loss: 2.0031\n",
"2023-07-02 20:39:04,494 - modelscope - INFO - epoch [1][325/4982]\tlr: 9.949e-05, memory: 13730, loss: 3.7469\n",
"2023-07-02 20:39:07,068 - modelscope - INFO - epoch [1][330/4982]\tlr: 9.947e-05, memory: 13730, loss: 3.0187\n",
"2023-07-02 20:39:09,719 - modelscope - INFO - epoch [1][335/4982]\tlr: 9.944e-05, memory: 13730, loss: 2.5828\n",
"2023-07-02 20:39:11,755 - modelscope - INFO - epoch [1][340/4982]\tlr: 9.941e-05, memory: 13730, loss: 4.1156\n",
"2023-07-02 20:39:14,258 - modelscope - INFO - epoch [1][345/4982]\tlr: 9.938e-05, memory: 13730, loss: 5.1594\n",
"2023-07-02 20:39:16,436 - modelscope - INFO - epoch [1][350/4982]\tlr: 9.935e-05, memory: 13730, loss: 4.0859\n",
"2023-07-02 20:39:19,643 - modelscope - INFO - epoch [1][355/4982]\tlr: 9.932e-05, memory: 13730, loss: 1.8391\n",
"2023-07-02 20:39:22,779 - modelscope - INFO - epoch [1][360/4982]\tlr: 9.929e-05, memory: 13730, loss: 2.0641\n",
"2023-07-02 20:39:25,402 - modelscope - INFO - epoch [1][365/4982]\tlr: 9.926e-05, memory: 13730, loss: 1.9453\n",
"2023-07-02 20:39:27,813 - modelscope - INFO - epoch [1][370/4982]\tlr: 9.923e-05, memory: 13730, loss: 3.8641\n",
"2023-07-02 20:39:30,315 - modelscope - INFO - epoch [1][375/4982]\tlr: 9.920e-05, memory: 13730, loss: 3.0281\n",
"2023-07-02 20:39:33,075 - modelscope - INFO - epoch [1][380/4982]\tlr: 9.916e-05, memory: 13730, loss: 1.9109\n",
"2023-07-02 20:39:35,539 - modelscope - INFO - epoch [1][385/4982]\tlr: 9.913e-05, memory: 13730, loss: 3.9797\n",
"2023-07-02 20:39:37,804 - modelscope - INFO - epoch [1][390/4982]\tlr: 9.910e-05, memory: 13730, loss: 4.4547\n",
"2023-07-02 20:39:40,277 - modelscope - INFO - epoch [1][395/4982]\tlr: 9.906e-05, memory: 13730, loss: 2.4516\n",
"2023-07-02 20:39:43,900 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.25it/s]\n",
"2023-07-02 20:40:50,049 - modelscope - INFO - Saving checkpoint at 400 iter\n",
"2023-07-02 20:40:50,080 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter200_acc0.6542276740074158\n",
"2023-07-02 20:40:50,083 - modelscope - INFO - Saving checkpoint at 400 iter\n",
"2023-07-02 20:40:50,113 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_200\n",
"2023-07-02 20:40:50,115 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13730, evaluation/acc: 0.6604, evaluation/loss: 3.0119, loss: 2.8062\n",
"2023-07-02 20:40:53,254 - modelscope - INFO - epoch [1][405/4982]\tlr: 9.900e-05, memory: 13730, loss: 3.2422\n",
"2023-07-02 20:40:55,618 - modelscope - INFO - epoch [1][410/4982]\tlr: 9.896e-05, memory: 13730, loss: 4.2297\n",
"2023-07-02 20:40:58,448 - modelscope - INFO - epoch [1][415/4982]\tlr: 9.893e-05, memory: 13730, loss: 3.6063\n",
"2023-07-02 20:41:00,872 - modelscope - INFO - epoch [1][420/4982]\tlr: 9.889e-05, memory: 13730, loss: 4.6141\n",
"2023-07-02 20:41:02,997 - modelscope - INFO - epoch [1][425/4982]\tlr: 9.885e-05, memory: 13730, loss: 5.2875\n",
"2023-07-02 20:41:06,866 - modelscope - INFO - epoch [1][430/4982]\tlr: 9.882e-05, memory: 13730, loss: 2.2109\n",
"2023-07-02 20:41:09,155 - modelscope - INFO - epoch [1][435/4982]\tlr: 9.878e-05, memory: 13730, loss: 2.5969\n",
"2023-07-02 20:41:11,158 - modelscope - INFO - epoch [1][440/4982]\tlr: 9.874e-05, memory: 13730, loss: 3.1453\n",
"2023-07-02 20:41:13,695 - modelscope - INFO - epoch [1][445/4982]\tlr: 9.870e-05, memory: 13730, loss: 4.1219\n",
"2023-07-02 20:41:16,481 - modelscope - INFO - epoch [1][450/4982]\tlr: 9.867e-05, memory: 13730, loss: 3.0016\n",
"2023-07-02 20:41:19,595 - modelscope - INFO - epoch [1][455/4982]\tlr: 9.863e-05, memory: 13730, loss: 2.0086\n",
"2023-07-02 20:41:22,798 - modelscope - INFO - epoch [1][460/4982]\tlr: 9.859e-05, memory: 13730, loss: 1.6477\n",
"2023-07-02 20:41:24,516 - modelscope - INFO - epoch [1][465/4982]\tlr: 9.855e-05, memory: 13730, loss: 5.0250\n",
"2023-07-02 20:41:26,807 - modelscope - INFO - epoch [1][470/4982]\tlr: 9.851e-05, memory: 13730, loss: 5.0906\n",
"2023-07-02 20:41:29,550 - modelscope - INFO - epoch [1][475/4982]\tlr: 9.847e-05, memory: 13730, loss: 3.1719\n",
"2023-07-02 20:41:31,558 - modelscope - INFO - epoch [1][480/4982]\tlr: 9.843e-05, memory: 13730, loss: 3.0094\n",
"2023-07-02 20:41:34,367 - modelscope - INFO - epoch [1][485/4982]\tlr: 9.839e-05, memory: 13730, loss: 1.8000\n",
"2023-07-02 20:41:37,084 - modelscope - INFO - epoch [1][490/4982]\tlr: 9.834e-05, memory: 13730, loss: 3.2406\n",
"2023-07-02 20:41:39,602 - modelscope - INFO - epoch [1][495/4982]\tlr: 9.830e-05, memory: 13730, loss: 2.9141\n",
"2023-07-02 20:41:42,010 - modelscope - INFO - epoch [1][500/4982]\tlr: 9.826e-05, memory: 13730, loss: 3.1969\n",
"2023-07-02 20:41:44,328 - modelscope - INFO - epoch [1][505/4982]\tlr: 9.822e-05, memory: 13730, loss: 2.4125\n",
"2023-07-02 20:41:47,138 - modelscope - INFO - epoch [1][510/4982]\tlr: 9.817e-05, memory: 13730, loss: 2.3031\n",
"2023-07-02 20:41:50,494 - modelscope - INFO - epoch [1][515/4982]\tlr: 9.813e-05, memory: 13730, loss: 2.2938\n",
"2023-07-02 20:41:52,746 - modelscope - INFO - epoch [1][520/4982]\tlr: 9.808e-05, memory: 13730, loss: 3.8672\n",
"2023-07-02 20:41:54,958 - modelscope - INFO - epoch [1][525/4982]\tlr: 9.804e-05, memory: 13730, loss: 3.2156\n",
"2023-07-02 20:41:57,466 - modelscope - INFO - epoch [1][530/4982]\tlr: 9.799e-05, memory: 13730, loss: 3.0344\n",
"2023-07-02 20:42:00,137 - modelscope - INFO - epoch [1][535/4982]\tlr: 9.795e-05, memory: 13730, loss: 4.9406\n",
"2023-07-02 20:42:02,774 - modelscope - INFO - epoch [1][540/4982]\tlr: 9.790e-05, memory: 13730, loss: 3.3563\n",
"2023-07-02 20:42:05,715 - modelscope - INFO - epoch [1][545/4982]\tlr: 9.786e-05, memory: 13730, loss: 1.4797\n",
"2023-07-02 20:42:07,960 - modelscope - INFO - epoch [1][550/4982]\tlr: 9.781e-05, memory: 13730, loss: 3.8781\n",
"2023-07-02 20:42:11,011 - modelscope - INFO - epoch [1][555/4982]\tlr: 9.776e-05, memory: 13730, loss: 2.9297\n",
"2023-07-02 20:42:13,456 - modelscope - INFO - epoch [1][560/4982]\tlr: 9.771e-05, memory: 13730, loss: 3.8203\n",
"2023-07-02 20:42:15,443 - modelscope - INFO - epoch [1][565/4982]\tlr: 9.767e-05, memory: 13730, loss: 2.0219\n",
"2023-07-02 20:42:18,846 - modelscope - INFO - epoch [1][570/4982]\tlr: 9.762e-05, memory: 13730, loss: 1.9281\n",
"2023-07-02 20:42:22,121 - modelscope - INFO - epoch [1][575/4982]\tlr: 9.757e-05, memory: 13730, loss: 2.6750\n",
"2023-07-02 20:42:25,145 - modelscope - INFO - epoch [1][580/4982]\tlr: 9.752e-05, memory: 13730, loss: 1.7852\n",
"2023-07-02 20:42:27,316 - modelscope - INFO - epoch [1][585/4982]\tlr: 9.747e-05, memory: 13730, loss: 2.8047\n",
"2023-07-02 20:42:29,441 - modelscope - INFO - epoch [1][590/4982]\tlr: 9.742e-05, memory: 13730, loss: 2.6773\n",
"2023-07-02 20:42:32,360 - modelscope - INFO - epoch [1][595/4982]\tlr: 9.737e-05, memory: 13730, loss: 1.9812\n",
"2023-07-02 20:42:35,221 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
"2023-07-02 20:43:41,520 - modelscope - INFO - Saving checkpoint at 600 iter\n",
"2023-07-02 20:43:41,550 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter400_acc0.6604225635528564\n",
"2023-07-02 20:43:41,552 - modelscope - INFO - Saving checkpoint at 600 iter\n",
"2023-07-02 20:43:41,582 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_400\n",
"2023-07-02 20:43:41,584 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13730, evaluation/acc: 0.6708, evaluation/loss: 2.5856, loss: 2.3328\n",
"2023-07-02 20:43:43,999 - modelscope - INFO - epoch [1][605/4982]\tlr: 9.726e-05, memory: 13730, loss: 2.6875\n",
"2023-07-02 20:43:47,119 - modelscope - INFO - epoch [1][610/4982]\tlr: 9.721e-05, memory: 13730, loss: 1.4031\n",
"2023-07-02 20:43:48,961 - modelscope - INFO - epoch [1][615/4982]\tlr: 9.716e-05, memory: 13730, loss: 2.9422\n",
"2023-07-02 20:43:51,931 - modelscope - INFO - epoch [1][620/4982]\tlr: 9.711e-05, memory: 13730, loss: 2.2016\n",
"2023-07-02 20:43:55,085 - modelscope - INFO - epoch [1][625/4982]\tlr: 9.705e-05, memory: 13730, loss: 2.4344\n",
"2023-07-02 20:43:57,859 - modelscope - INFO - epoch [1][630/4982]\tlr: 9.700e-05, memory: 13730, loss: 1.9727\n",
"2023-07-02 20:44:00,652 - modelscope - INFO - epoch [1][635/4982]\tlr: 9.695e-05, memory: 13730, loss: 3.5047\n",
"2023-07-02 20:44:03,525 - modelscope - INFO - epoch [1][640/4982]\tlr: 9.689e-05, memory: 13730, loss: 2.3672\n",
"2023-07-02 20:44:06,457 - modelscope - INFO - epoch [1][645/4982]\tlr: 9.684e-05, memory: 13730, loss: 2.7797\n",
"2023-07-02 20:44:08,691 - modelscope - INFO - epoch [1][650/4982]\tlr: 9.678e-05, memory: 13730, loss: 1.9734\n",
"2023-07-02 20:44:11,608 - modelscope - INFO - epoch [1][655/4982]\tlr: 9.673e-05, memory: 13730, loss: 2.0531\n",
"2023-07-02 20:44:13,499 - modelscope - INFO - epoch [1][660/4982]\tlr: 9.667e-05, memory: 13730, loss: 2.8078\n",
"2023-07-02 20:44:15,767 - modelscope - INFO - epoch [1][665/4982]\tlr: 9.661e-05, memory: 13730, loss: 3.3703\n",
"2023-07-02 20:44:18,064 - modelscope - INFO - epoch [1][670/4982]\tlr: 9.656e-05, memory: 13730, loss: 3.2156\n",
"2023-07-02 20:44:20,955 - modelscope - INFO - epoch [1][675/4982]\tlr: 9.650e-05, memory: 13830, loss: 3.4172\n",
"2023-07-02 20:44:24,557 - modelscope - INFO - epoch [1][680/4982]\tlr: 9.644e-05, memory: 13830, loss: 1.4219\n",
"2023-07-02 20:44:27,433 - modelscope - INFO - epoch [1][685/4982]\tlr: 9.638e-05, memory: 13830, loss: 3.5094\n",
"2023-07-02 20:44:30,177 - modelscope - INFO - epoch [1][690/4982]\tlr: 9.632e-05, memory: 13830, loss: 2.3234\n",
"2023-07-02 20:44:32,790 - modelscope - INFO - epoch [1][695/4982]\tlr: 9.627e-05, memory: 13830, loss: 1.7906\n",
"2023-07-02 20:44:35,003 - modelscope - INFO - epoch [1][700/4982]\tlr: 9.621e-05, memory: 13830, loss: 3.4016\n",
"2023-07-02 20:44:38,237 - modelscope - INFO - epoch [1][705/4982]\tlr: 9.615e-05, memory: 13830, loss: 2.1484\n",
"2023-07-02 20:44:42,304 - modelscope - INFO - epoch [1][710/4982]\tlr: 9.609e-05, memory: 13830, loss: 1.9828\n",
"2023-07-02 20:44:45,293 - modelscope - INFO - epoch [1][715/4982]\tlr: 9.602e-05, memory: 13830, loss: 1.6828\n",
"2023-07-02 20:44:48,385 - modelscope - INFO - epoch [1][720/4982]\tlr: 9.596e-05, memory: 13830, loss: 2.0969\n",
"2023-07-02 20:44:50,846 - modelscope - INFO - epoch [1][725/4982]\tlr: 9.590e-05, memory: 13830, loss: 3.2031\n",
"2023-07-02 20:44:53,572 - modelscope - INFO - epoch [1][730/4982]\tlr: 9.584e-05, memory: 13830, loss: 2.8055\n",
"2023-07-02 20:44:54,918 - modelscope - INFO - epoch [1][735/4982]\tlr: 9.578e-05, memory: 13830, loss: 5.0641\n",
"2023-07-02 20:44:58,220 - modelscope - INFO - epoch [1][740/4982]\tlr: 9.572e-05, memory: 13830, loss: 2.5125\n",
"2023-07-02 20:45:01,363 - modelscope - INFO - epoch [1][745/4982]\tlr: 9.565e-05, memory: 13830, loss: 1.5758\n",
"2023-07-02 20:45:03,990 - modelscope - INFO - epoch [1][750/4982]\tlr: 9.559e-05, memory: 13830, loss: 2.3664\n",
"2023-07-02 20:45:06,603 - modelscope - INFO - epoch [1][755/4982]\tlr: 9.553e-05, memory: 13830, loss: 1.8188\n",
"2023-07-02 20:45:09,658 - modelscope - INFO - epoch [1][760/4982]\tlr: 9.546e-05, memory: 13830, loss: 2.6125\n",
"2023-07-02 20:45:12,102 - modelscope - INFO - epoch [1][765/4982]\tlr: 9.540e-05, memory: 13830, loss: 1.7031\n",
"2023-07-02 20:45:14,836 - modelscope - INFO - epoch [1][770/4982]\tlr: 9.533e-05, memory: 13830, loss: 1.7359\n",
"2023-07-02 20:45:17,436 - modelscope - INFO - epoch [1][775/4982]\tlr: 9.527e-05, memory: 13830, loss: 1.4336\n",
"2023-07-02 20:45:20,163 - modelscope - INFO - epoch [1][780/4982]\tlr: 9.520e-05, memory: 13830, loss: 2.5672\n",
"2023-07-02 20:45:23,429 - modelscope - INFO - epoch [1][785/4982]\tlr: 9.513e-05, memory: 13830, loss: 1.9164\n",
"2023-07-02 20:45:26,285 - modelscope - INFO - epoch [1][790/4982]\tlr: 9.507e-05, memory: 13830, loss: 2.3203\n",
"2023-07-02 20:45:28,656 - modelscope - INFO - epoch [1][795/4982]\tlr: 9.500e-05, memory: 13830, loss: 2.7672\n",
"2023-07-02 20:45:31,279 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 20:46:37,656 - modelscope - INFO - Saving checkpoint at 800 iter\n",
"2023-07-02 20:46:37,685 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter600_acc0.6708211898803711\n",
"2023-07-02 20:46:37,687 - modelscope - INFO - Saving checkpoint at 800 iter\n",
"2023-07-02 20:46:37,715 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_600\n",
"2023-07-02 20:46:37,718 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13830, evaluation/acc: 0.6881, evaluation/loss: 2.2625, loss: 2.6750\n",
"2023-07-02 20:46:40,639 - modelscope - INFO - epoch [1][805/4982]\tlr: 9.486e-05, memory: 13830, loss: 1.8695\n",
"2023-07-02 20:46:43,092 - modelscope - INFO - epoch [1][810/4982]\tlr: 9.480e-05, memory: 13830, loss: 2.8734\n",
"2023-07-02 20:46:46,484 - modelscope - INFO - epoch [1][815/4982]\tlr: 9.473e-05, memory: 13830, loss: 1.7906\n",
"2023-07-02 20:46:49,542 - modelscope - INFO - epoch [1][820/4982]\tlr: 9.466e-05, memory: 13830, loss: 2.6391\n",
"2023-07-02 20:46:52,581 - modelscope - INFO - epoch [1][825/4982]\tlr: 9.459e-05, memory: 13830, loss: 2.3250\n",
"2023-07-02 20:46:55,248 - modelscope - INFO - epoch [1][830/4982]\tlr: 9.452e-05, memory: 13830, loss: 2.3188\n",
"2023-07-02 20:46:58,323 - modelscope - INFO - epoch [1][835/4982]\tlr: 9.445e-05, memory: 13830, loss: 1.8852\n",
"2023-07-02 20:47:00,885 - modelscope - INFO - epoch [1][840/4982]\tlr: 9.438e-05, memory: 13830, loss: 2.5203\n",
"2023-07-02 20:47:03,739 - modelscope - INFO - epoch [1][845/4982]\tlr: 9.431e-05, memory: 13830, loss: 2.2563\n",
"2023-07-02 20:47:06,494 - modelscope - INFO - epoch [1][850/4982]\tlr: 9.424e-05, memory: 13830, loss: 2.4937\n",
"2023-07-02 20:47:08,653 - modelscope - INFO - epoch [1][855/4982]\tlr: 9.416e-05, memory: 13830, loss: 2.1844\n",
"2023-07-02 20:47:12,100 - modelscope - INFO - epoch [1][860/4982]\tlr: 9.409e-05, memory: 13830, loss: 2.6281\n",
"2023-07-02 20:47:14,954 - modelscope - INFO - epoch [1][865/4982]\tlr: 9.402e-05, memory: 13830, loss: 1.7703\n",
"2023-07-02 20:47:17,549 - modelscope - INFO - epoch [1][870/4982]\tlr: 9.395e-05, memory: 13830, loss: 3.3172\n",
"2023-07-02 20:47:20,094 - modelscope - INFO - epoch [1][875/4982]\tlr: 9.387e-05, memory: 13830, loss: 2.2594\n",
"2023-07-02 20:47:23,556 - modelscope - INFO - epoch [1][880/4982]\tlr: 9.380e-05, memory: 13830, loss: 2.6352\n",
"2023-07-02 20:47:25,327 - modelscope - INFO - epoch [1][885/4982]\tlr: 9.373e-05, memory: 13830, loss: 2.7180\n",
"2023-07-02 20:47:28,177 - modelscope - INFO - epoch [1][890/4982]\tlr: 9.365e-05, memory: 13830, loss: 2.3750\n",
"2023-07-02 20:47:30,955 - modelscope - INFO - epoch [1][895/4982]\tlr: 9.358e-05, memory: 13830, loss: 1.7266\n",
"2023-07-02 20:47:34,940 - modelscope - INFO - epoch [1][900/4982]\tlr: 9.350e-05, memory: 13830, loss: 2.1984\n",
"2023-07-02 20:47:37,402 - modelscope - INFO - epoch [1][905/4982]\tlr: 9.343e-05, memory: 13830, loss: 2.2336\n",
"2023-07-02 20:47:40,011 - modelscope - INFO - epoch [1][910/4982]\tlr: 9.335e-05, memory: 13830, loss: 2.7844\n",
"2023-07-02 20:47:42,601 - modelscope - INFO - epoch [1][915/4982]\tlr: 9.327e-05, memory: 13830, loss: 3.2297\n",
"2023-07-02 20:47:44,837 - modelscope - INFO - epoch [1][920/4982]\tlr: 9.320e-05, memory: 13830, loss: 2.4188\n",
"2023-07-02 20:47:47,897 - modelscope - INFO - epoch [1][925/4982]\tlr: 9.312e-05, memory: 13830, loss: 1.6863\n",
"2023-07-02 20:47:50,418 - modelscope - INFO - epoch [1][930/4982]\tlr: 9.304e-05, memory: 13830, loss: 3.9219\n",
"2023-07-02 20:47:52,672 - modelscope - INFO - epoch [1][935/4982]\tlr: 9.296e-05, memory: 13830, loss: 1.6926\n",
"2023-07-02 20:47:55,286 - modelscope - INFO - epoch [1][940/4982]\tlr: 9.289e-05, memory: 13830, loss: 1.7281\n",
"2023-07-02 20:47:59,111 - modelscope - INFO - epoch [1][945/4982]\tlr: 9.281e-05, memory: 13830, loss: 1.1969\n",
"2023-07-02 20:48:01,843 - modelscope - INFO - epoch [1][950/4982]\tlr: 9.273e-05, memory: 13830, loss: 1.6633\n",
"2023-07-02 20:48:04,387 - modelscope - INFO - epoch [1][955/4982]\tlr: 9.265e-05, memory: 13830, loss: 2.2094\n",
"2023-07-02 20:48:06,681 - modelscope - INFO - epoch [1][960/4982]\tlr: 9.257e-05, memory: 13830, loss: 2.1922\n",
"2023-07-02 20:48:09,850 - modelscope - INFO - epoch [1][965/4982]\tlr: 9.249e-05, memory: 13830, loss: 1.3594\n",
"2023-07-02 20:48:12,651 - modelscope - INFO - epoch [1][970/4982]\tlr: 9.241e-05, memory: 13830, loss: 1.7945\n",
"2023-07-02 20:48:15,819 - modelscope - INFO - epoch [1][975/4982]\tlr: 9.233e-05, memory: 13830, loss: 1.7203\n",
"2023-07-02 20:48:18,453 - modelscope - INFO - epoch [1][980/4982]\tlr: 9.225e-05, memory: 13830, loss: 1.8453\n",
"2023-07-02 20:48:20,628 - modelscope - INFO - epoch [1][985/4982]\tlr: 9.216e-05, memory: 13830, loss: 1.8086\n",
"2023-07-02 20:48:22,947 - modelscope - INFO - epoch [1][990/4982]\tlr: 9.208e-05, memory: 13830, loss: 2.6445\n",
"2023-07-02 20:48:25,309 - modelscope - INFO - epoch [1][995/4982]\tlr: 9.200e-05, memory: 13830, loss: 3.2172\n",
"2023-07-02 20:48:28,028 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 20:49:34,496 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
"2023-07-02 20:49:34,522 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter800_acc0.6881153583526611\n",
"2023-07-02 20:49:34,524 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
"2023-07-02 20:49:34,548 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_800\n",
"2023-07-02 20:49:34,551 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13830, evaluation/acc: 0.7003, evaluation/loss: 2.0893, loss: 2.7594\n",
"2023-07-02 20:49:37,631 - modelscope - INFO - epoch [1][1005/4982]\tlr: 9.183e-05, memory: 13830, loss: 1.3188\n",
"2023-07-02 20:49:40,106 - modelscope - INFO - epoch [1][1010/4982]\tlr: 9.175e-05, memory: 13830, loss: 2.3094\n",
"2023-07-02 20:49:42,559 - modelscope - INFO - epoch [1][1015/4982]\tlr: 9.167e-05, memory: 13830, loss: 2.4734\n",
"2023-07-02 20:49:44,919 - modelscope - INFO - epoch [1][1020/4982]\tlr: 9.158e-05, memory: 13830, loss: 2.0336\n",
"2023-07-02 20:49:49,264 - modelscope - INFO - epoch [1][1025/4982]\tlr: 9.150e-05, memory: 13861, loss: 1.0523\n",
"2023-07-02 20:49:51,204 - modelscope - INFO - epoch [1][1030/4982]\tlr: 9.141e-05, memory: 13861, loss: 3.1086\n",
"2023-07-02 20:49:53,066 - modelscope - INFO - epoch [1][1035/4982]\tlr: 9.133e-05, memory: 13861, loss: 2.3414\n",
"2023-07-02 20:49:56,035 - modelscope - INFO - epoch [1][1040/4982]\tlr: 9.124e-05, memory: 13861, loss: 2.2359\n",
"2023-07-02 20:49:59,351 - modelscope - INFO - epoch [1][1045/4982]\tlr: 9.116e-05, memory: 13861, loss: 1.9051\n",
"2023-07-02 20:50:01,989 - modelscope - INFO - epoch [1][1050/4982]\tlr: 9.107e-05, memory: 13861, loss: 1.5266\n",
"2023-07-02 20:50:04,982 - modelscope - INFO - epoch [1][1055/4982]\tlr: 9.098e-05, memory: 13861, loss: 2.5000\n",
"2023-07-02 20:50:07,348 - modelscope - INFO - epoch [1][1060/4982]\tlr: 9.090e-05, memory: 13861, loss: 2.9164\n",
"2023-07-02 20:50:10,149 - modelscope - INFO - epoch [1][1065/4982]\tlr: 9.081e-05, memory: 13861, loss: 2.1641\n",
"2023-07-02 20:50:13,289 - modelscope - INFO - epoch [1][1070/4982]\tlr: 9.072e-05, memory: 13861, loss: 2.7469\n",
"2023-07-02 20:50:16,220 - modelscope - INFO - epoch [1][1075/4982]\tlr: 9.063e-05, memory: 13861, loss: 2.2922\n",
"2023-07-02 20:50:18,255 - modelscope - INFO - epoch [1][1080/4982]\tlr: 9.054e-05, memory: 13861, loss: 3.7016\n",
"2023-07-02 20:50:21,566 - modelscope - INFO - epoch [1][1085/4982]\tlr: 9.046e-05, memory: 13861, loss: 1.1164\n",
"2023-07-02 20:50:24,961 - modelscope - INFO - epoch [1][1090/4982]\tlr: 9.037e-05, memory: 13861, loss: 1.5523\n",
"2023-07-02 20:50:28,072 - modelscope - INFO - epoch [1][1095/4982]\tlr: 9.028e-05, memory: 13861, loss: 1.9781\n",
"2023-07-02 20:50:31,178 - modelscope - INFO - epoch [1][1100/4982]\tlr: 9.019e-05, memory: 13861, loss: 2.0867\n",
"2023-07-02 20:50:33,103 - modelscope - INFO - epoch [1][1105/4982]\tlr: 9.010e-05, memory: 13861, loss: 2.9258\n",
"2023-07-02 20:50:37,069 - modelscope - INFO - epoch [1][1110/4982]\tlr: 9.001e-05, memory: 14281, loss: 1.8297\n",
"2023-07-02 20:50:39,077 - modelscope - INFO - epoch [1][1115/4982]\tlr: 8.992e-05, memory: 14281, loss: 2.1539\n",
"2023-07-02 20:50:41,028 - modelscope - INFO - epoch [1][1120/4982]\tlr: 8.982e-05, memory: 14281, loss: 2.4891\n",
"2023-07-02 20:50:43,285 - modelscope - INFO - epoch [1][1125/4982]\tlr: 8.973e-05, memory: 14281, loss: 1.7930\n",
"2023-07-02 20:50:46,047 - modelscope - INFO - epoch [1][1130/4982]\tlr: 8.964e-05, memory: 14281, loss: 1.1984\n",
"2023-07-02 20:50:49,011 - modelscope - INFO - epoch [1][1135/4982]\tlr: 8.955e-05, memory: 14281, loss: 3.1102\n",
"2023-07-02 20:50:51,386 - modelscope - INFO - epoch [1][1140/4982]\tlr: 8.946e-05, memory: 14281, loss: 2.2969\n",
"2023-07-02 20:50:54,463 - modelscope - INFO - epoch [1][1145/4982]\tlr: 8.936e-05, memory: 14281, loss: 1.7891\n",
"2023-07-02 20:50:56,539 - modelscope - INFO - epoch [1][1150/4982]\tlr: 8.927e-05, memory: 14281, loss: 2.6641\n",
"2023-07-02 20:50:58,715 - modelscope - INFO - epoch [1][1155/4982]\tlr: 8.918e-05, memory: 14281, loss: 2.5141\n",
"2023-07-02 20:51:01,359 - modelscope - INFO - epoch [1][1160/4982]\tlr: 8.908e-05, memory: 14281, loss: 1.7031\n",
"2023-07-02 20:51:04,218 - modelscope - INFO - epoch [1][1165/4982]\tlr: 8.899e-05, memory: 14281, loss: 2.7891\n",
"2023-07-02 20:51:07,009 - modelscope - INFO - epoch [1][1170/4982]\tlr: 8.889e-05, memory: 14281, loss: 1.6977\n",
"2023-07-02 20:51:09,989 - modelscope - INFO - epoch [1][1175/4982]\tlr: 8.880e-05, memory: 14281, loss: 1.7984\n",
"2023-07-02 20:51:13,347 - modelscope - INFO - epoch [1][1180/4982]\tlr: 8.870e-05, memory: 14281, loss: 1.7750\n",
"2023-07-02 20:51:16,349 - modelscope - INFO - epoch [1][1185/4982]\tlr: 8.861e-05, memory: 14281, loss: 2.2219\n",
"2023-07-02 20:51:18,901 - modelscope - INFO - epoch [1][1190/4982]\tlr: 8.851e-05, memory: 14281, loss: 2.1070\n",
"2023-07-02 20:51:22,332 - modelscope - INFO - epoch [1][1195/4982]\tlr: 8.841e-05, memory: 14281, loss: 1.3805\n",
"2023-07-02 20:51:25,298 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 20:52:31,792 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
"2023-07-02 20:52:31,820 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1000_acc0.7003207802772522\n",
"2023-07-02 20:52:31,822 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
"2023-07-02 20:52:31,848 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1000\n",
"2023-07-02 20:52:31,851 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7126, evaluation/loss: 1.9764, loss: 1.4297\n",
"2023-07-02 20:52:35,250 - modelscope - INFO - epoch [1][1205/4982]\tlr: 8.822e-05, memory: 14281, loss: 1.4805\n",
"2023-07-02 20:52:38,308 - modelscope - INFO - epoch [1][1210/4982]\tlr: 8.812e-05, memory: 14281, loss: 1.6289\n",
"2023-07-02 20:52:40,236 - modelscope - INFO - epoch [1][1215/4982]\tlr: 8.803e-05, memory: 14281, loss: 1.6109\n",
"2023-07-02 20:52:42,979 - modelscope - INFO - epoch [1][1220/4982]\tlr: 8.793e-05, memory: 14281, loss: 1.8672\n",
"2023-07-02 20:52:45,670 - modelscope - INFO - epoch [1][1225/4982]\tlr: 8.783e-05, memory: 14281, loss: 1.7875\n",
"2023-07-02 20:52:48,769 - modelscope - INFO - epoch [1][1230/4982]\tlr: 8.773e-05, memory: 14281, loss: 2.9453\n",
"2023-07-02 20:52:51,329 - modelscope - INFO - epoch [1][1235/4982]\tlr: 8.763e-05, memory: 14281, loss: 3.7453\n",
"2023-07-02 20:52:54,457 - modelscope - INFO - epoch [1][1240/4982]\tlr: 8.753e-05, memory: 14281, loss: 1.6602\n",
"2023-07-02 20:52:57,272 - modelscope - INFO - epoch [1][1245/4982]\tlr: 8.743e-05, memory: 14281, loss: 1.9398\n",
"2023-07-02 20:52:59,875 - modelscope - INFO - epoch [1][1250/4982]\tlr: 8.733e-05, memory: 14281, loss: 2.6437\n",
"2023-07-02 20:53:03,234 - modelscope - INFO - epoch [1][1255/4982]\tlr: 8.723e-05, memory: 14281, loss: 1.9438\n",
"2023-07-02 20:53:05,817 - modelscope - INFO - epoch [1][1260/4982]\tlr: 8.713e-05, memory: 14281, loss: 2.0344\n",
"2023-07-02 20:53:07,576 - modelscope - INFO - epoch [1][1265/4982]\tlr: 8.703e-05, memory: 14281, loss: 3.1516\n",
"2023-07-02 20:53:10,222 - modelscope - INFO - epoch [1][1270/4982]\tlr: 8.693e-05, memory: 14281, loss: 1.7117\n",
"2023-07-02 20:53:14,014 - modelscope - INFO - epoch [1][1275/4982]\tlr: 8.683e-05, memory: 14281, loss: 1.1664\n",
"2023-07-02 20:53:16,657 - modelscope - INFO - epoch [1][1280/4982]\tlr: 8.673e-05, memory: 14281, loss: 2.4438\n",
"2023-07-02 20:53:19,474 - modelscope - INFO - epoch [1][1285/4982]\tlr: 8.663e-05, memory: 14281, loss: 1.6219\n",
"2023-07-02 20:53:22,505 - modelscope - INFO - epoch [1][1290/4982]\tlr: 8.652e-05, memory: 14281, loss: 1.4367\n",
"2023-07-02 20:53:25,260 - modelscope - INFO - epoch [1][1295/4982]\tlr: 8.642e-05, memory: 14281, loss: 2.8367\n",
"2023-07-02 20:53:27,856 - modelscope - INFO - epoch [1][1300/4982]\tlr: 8.632e-05, memory: 14281, loss: 2.7094\n",
"2023-07-02 20:53:30,269 - modelscope - INFO - epoch [1][1305/4982]\tlr: 8.621e-05, memory: 14281, loss: 2.2687\n",
"2023-07-02 20:53:32,850 - modelscope - INFO - epoch [1][1310/4982]\tlr: 8.611e-05, memory: 14281, loss: 1.6922\n",
"2023-07-02 20:53:35,441 - modelscope - INFO - epoch [1][1315/4982]\tlr: 8.601e-05, memory: 14281, loss: 1.6664\n",
"2023-07-02 20:53:38,415 - modelscope - INFO - epoch [1][1320/4982]\tlr: 8.590e-05, memory: 14281, loss: 1.8898\n",
"2023-07-02 20:53:41,871 - modelscope - INFO - epoch [1][1325/4982]\tlr: 8.580e-05, memory: 14281, loss: 1.3605\n",
"2023-07-02 20:53:44,517 - modelscope - INFO - epoch [1][1330/4982]\tlr: 8.569e-05, memory: 14281, loss: 1.8219\n",
"2023-07-02 20:53:46,642 - modelscope - INFO - epoch [1][1335/4982]\tlr: 8.559e-05, memory: 14281, loss: 2.2359\n",
"2023-07-02 20:53:49,682 - modelscope - INFO - epoch [1][1340/4982]\tlr: 8.548e-05, memory: 14281, loss: 1.8867\n",
"2023-07-02 20:53:52,314 - modelscope - INFO - epoch [1][1345/4982]\tlr: 8.538e-05, memory: 14281, loss: 1.0359\n",
"2023-07-02 20:53:53,796 - modelscope - INFO - epoch [1][1350/4982]\tlr: 8.527e-05, memory: 14281, loss: 3.0266\n",
"2023-07-02 20:53:55,582 - modelscope - INFO - epoch [1][1355/4982]\tlr: 8.516e-05, memory: 14281, loss: 3.4328\n",
"2023-07-02 20:53:57,793 - modelscope - INFO - epoch [1][1360/4982]\tlr: 8.506e-05, memory: 14281, loss: 1.6180\n",
"2023-07-02 20:54:00,871 - modelscope - INFO - epoch [1][1365/4982]\tlr: 8.495e-05, memory: 14281, loss: 1.6867\n",
"2023-07-02 20:54:03,738 - modelscope - INFO - epoch [1][1370/4982]\tlr: 8.484e-05, memory: 14281, loss: 1.8242\n",
"2023-07-02 20:54:05,352 - modelscope - INFO - epoch [1][1375/4982]\tlr: 8.474e-05, memory: 14281, loss: 3.2016\n",
"2023-07-02 20:54:08,417 - modelscope - INFO - epoch [1][1380/4982]\tlr: 8.463e-05, memory: 14281, loss: 1.9574\n",
"2023-07-02 20:54:11,057 - modelscope - INFO - epoch [1][1385/4982]\tlr: 8.452e-05, memory: 14281, loss: 2.2539\n",
"2023-07-02 20:54:13,691 - modelscope - INFO - epoch [1][1390/4982]\tlr: 8.441e-05, memory: 14281, loss: 1.7277\n",
"2023-07-02 20:54:17,235 - modelscope - INFO - epoch [1][1395/4982]\tlr: 8.430e-05, memory: 14281, loss: 1.1039\n",
"2023-07-02 20:54:18,839 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 20:55:25,409 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
"2023-07-02 20:55:25,440 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1200_acc0.7125999927520752\n",
"2023-07-02 20:55:25,442 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
"2023-07-02 20:55:25,472 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1200\n",
"2023-07-02 20:55:25,475 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7218, evaluation/loss: 1.9104, loss: 1.8773\n",
"2023-07-02 20:55:28,676 - modelscope - INFO - epoch [1][1405/4982]\tlr: 8.408e-05, memory: 14281, loss: 2.2473\n",
"2023-07-02 20:55:32,047 - modelscope - INFO - epoch [1][1410/4982]\tlr: 8.397e-05, memory: 14281, loss: 1.2844\n",
"2023-07-02 20:55:34,358 - modelscope - INFO - epoch [1][1415/4982]\tlr: 8.386e-05, memory: 14281, loss: 2.6406\n",
"2023-07-02 20:55:37,290 - modelscope - INFO - epoch [1][1420/4982]\tlr: 8.375e-05, memory: 14281, loss: 1.2020\n",
"2023-07-02 20:55:39,572 - modelscope - INFO - epoch [1][1425/4982]\tlr: 8.364e-05, memory: 14281, loss: 2.3109\n",
"2023-07-02 20:55:41,133 - modelscope - INFO - epoch [1][1430/4982]\tlr: 8.353e-05, memory: 14281, loss: 3.6844\n",
"2023-07-02 20:55:44,293 - modelscope - INFO - epoch [1][1435/4982]\tlr: 8.342e-05, memory: 14281, loss: 1.2117\n",
"2023-07-02 20:55:47,573 - modelscope - INFO - epoch [1][1440/4982]\tlr: 8.331e-05, memory: 14281, loss: 1.3582\n",
"2023-07-02 20:55:49,943 - modelscope - INFO - epoch [1][1445/4982]\tlr: 8.320e-05, memory: 14281, loss: 1.8289\n",
"2023-07-02 20:55:52,281 - modelscope - INFO - epoch [1][1450/4982]\tlr: 8.309e-05, memory: 14281, loss: 1.6055\n",
"2023-07-02 20:55:55,483 - modelscope - INFO - epoch [1][1455/4982]\tlr: 8.297e-05, memory: 14281, loss: 0.7688\n",
"2023-07-02 20:55:57,759 - modelscope - INFO - epoch [1][1460/4982]\tlr: 8.286e-05, memory: 14281, loss: 2.2945\n",
"2023-07-02 20:56:00,237 - modelscope - INFO - epoch [1][1465/4982]\tlr: 8.275e-05, memory: 14281, loss: 1.8000\n",
"2023-07-02 20:56:03,402 - modelscope - INFO - epoch [1][1470/4982]\tlr: 8.264e-05, memory: 14281, loss: 1.0266\n",
"2023-07-02 20:56:04,994 - modelscope - INFO - epoch [1][1475/4982]\tlr: 8.252e-05, memory: 14281, loss: 2.0094\n",
"2023-07-02 20:56:06,787 - modelscope - INFO - epoch [1][1480/4982]\tlr: 8.241e-05, memory: 14281, loss: 1.9977\n",
"2023-07-02 20:56:09,900 - modelscope - INFO - epoch [1][1485/4982]\tlr: 8.230e-05, memory: 14281, loss: 2.0945\n",
"2023-07-02 20:56:12,226 - modelscope - INFO - epoch [1][1490/4982]\tlr: 8.218e-05, memory: 14281, loss: 2.9172\n",
"2023-07-02 20:56:14,763 - modelscope - INFO - epoch [1][1495/4982]\tlr: 8.207e-05, memory: 14281, loss: 1.8367\n",
"2023-07-02 20:56:17,535 - modelscope - INFO - epoch [1][1500/4982]\tlr: 8.195e-05, memory: 14281, loss: 1.4617\n",
"2023-07-02 20:56:19,733 - modelscope - INFO - epoch [1][1505/4982]\tlr: 8.184e-05, memory: 14281, loss: 1.9328\n",
"2023-07-02 20:56:22,653 - modelscope - INFO - epoch [1][1510/4982]\tlr: 8.172e-05, memory: 14281, loss: 1.5078\n",
"2023-07-02 20:56:26,133 - modelscope - INFO - epoch [1][1515/4982]\tlr: 8.161e-05, memory: 14281, loss: 2.1977\n",
"2023-07-02 20:56:28,551 - modelscope - INFO - epoch [1][1520/4982]\tlr: 8.149e-05, memory: 14281, loss: 2.2246\n",
"2023-07-02 20:56:31,182 - modelscope - INFO - epoch [1][1525/4982]\tlr: 8.138e-05, memory: 14281, loss: 1.9840\n",
"2023-07-02 20:56:33,710 - modelscope - INFO - epoch [1][1530/4982]\tlr: 8.126e-05, memory: 14281, loss: 1.5406\n",
"2023-07-02 20:56:36,337 - modelscope - INFO - epoch [1][1535/4982]\tlr: 8.114e-05, memory: 14281, loss: 1.9930\n",
"2023-07-02 20:56:39,530 - modelscope - INFO - epoch [1][1540/4982]\tlr: 8.103e-05, memory: 14281, loss: 1.8547\n",
"2023-07-02 20:56:42,288 - modelscope - INFO - epoch [1][1545/4982]\tlr: 8.091e-05, memory: 14281, loss: 1.2977\n",
"2023-07-02 20:56:44,838 - modelscope - INFO - epoch [1][1550/4982]\tlr: 8.079e-05, memory: 14281, loss: 1.9984\n",
"2023-07-02 20:56:46,590 - modelscope - INFO - epoch [1][1555/4982]\tlr: 8.068e-05, memory: 14281, loss: 3.7969\n",
"2023-07-02 20:56:49,311 - modelscope - INFO - epoch [1][1560/4982]\tlr: 8.056e-05, memory: 14281, loss: 3.0336\n",
"2023-07-02 20:56:52,158 - modelscope - INFO - epoch [1][1565/4982]\tlr: 8.044e-05, memory: 14281, loss: 1.2789\n",
"2023-07-02 20:56:54,583 - modelscope - INFO - epoch [1][1570/4982]\tlr: 8.032e-05, memory: 14281, loss: 2.0461\n",
"2023-07-02 20:56:57,318 - modelscope - INFO - epoch [1][1575/4982]\tlr: 8.020e-05, memory: 14281, loss: 1.3301\n",
"2023-07-02 20:57:00,187 - modelscope - INFO - epoch [1][1580/4982]\tlr: 8.008e-05, memory: 14281, loss: 1.4945\n",
"2023-07-02 20:57:02,809 - modelscope - INFO - epoch [1][1585/4982]\tlr: 7.997e-05, memory: 14281, loss: 1.7984\n",
"2023-07-02 20:57:05,103 - modelscope - INFO - epoch [1][1590/4982]\tlr: 7.985e-05, memory: 14281, loss: 2.2133\n",
"2023-07-02 20:57:07,880 - modelscope - INFO - epoch [1][1595/4982]\tlr: 7.973e-05, memory: 14281, loss: 1.4664\n",
"2023-07-02 20:57:10,754 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 20:58:17,336 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
"2023-07-02 20:58:17,364 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1400_acc0.7218371033668518\n",
"2023-07-02 20:58:17,366 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
"2023-07-02 20:58:17,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1400\n",
"2023-07-02 20:58:17,395 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7349, evaluation/loss: 1.8596, loss: 0.7406\n",
"2023-07-02 20:58:19,762 - modelscope - INFO - epoch [1][1605/4982]\tlr: 7.949e-05, memory: 14281, loss: 2.4625\n",
"2023-07-02 20:58:22,187 - modelscope - INFO - epoch [1][1610/4982]\tlr: 7.937e-05, memory: 14281, loss: 2.0211\n",
"2023-07-02 20:58:24,593 - modelscope - INFO - epoch [1][1615/4982]\tlr: 7.925e-05, memory: 14281, loss: 1.8141\n",
"2023-07-02 20:58:26,348 - modelscope - INFO - epoch [1][1620/4982]\tlr: 7.913e-05, memory: 14281, loss: 2.8254\n",
"2023-07-02 20:58:28,996 - modelscope - INFO - epoch [1][1625/4982]\tlr: 7.900e-05, memory: 14281, loss: 1.3973\n",
"2023-07-02 20:58:31,382 - modelscope - INFO - epoch [1][1630/4982]\tlr: 7.888e-05, memory: 14281, loss: 2.4805\n",
"2023-07-02 20:58:34,123 - modelscope - INFO - epoch [1][1635/4982]\tlr: 7.876e-05, memory: 14281, loss: 1.2414\n",
"2023-07-02 20:58:37,249 - modelscope - INFO - epoch [1][1640/4982]\tlr: 7.864e-05, memory: 14281, loss: 1.7254\n",
"2023-07-02 20:58:40,060 - modelscope - INFO - epoch [1][1645/4982]\tlr: 7.852e-05, memory: 14281, loss: 2.1672\n",
"2023-07-02 20:58:42,200 - modelscope - INFO - epoch [1][1650/4982]\tlr: 7.840e-05, memory: 14281, loss: 2.4047\n",
"2023-07-02 20:58:44,560 - modelscope - INFO - epoch [1][1655/4982]\tlr: 7.827e-05, memory: 14281, loss: 1.7063\n",
"2023-07-02 20:58:47,535 - modelscope - INFO - epoch [1][1660/4982]\tlr: 7.815e-05, memory: 14281, loss: 1.3406\n",
"2023-07-02 20:58:50,161 - modelscope - INFO - epoch [1][1665/4982]\tlr: 7.803e-05, memory: 14281, loss: 2.4453\n",
"2023-07-02 20:58:52,380 - modelscope - INFO - epoch [1][1670/4982]\tlr: 7.791e-05, memory: 14281, loss: 1.7500\n",
"2023-07-02 20:58:54,351 - modelscope - INFO - epoch [1][1675/4982]\tlr: 7.778e-05, memory: 14281, loss: 2.8453\n",
"2023-07-02 20:58:55,966 - modelscope - INFO - epoch [1][1680/4982]\tlr: 7.766e-05, memory: 14281, loss: 1.8719\n",
"2023-07-02 20:58:58,457 - modelscope - INFO - epoch [1][1685/4982]\tlr: 7.754e-05, memory: 14281, loss: 2.1156\n",
"2023-07-02 20:59:01,212 - modelscope - INFO - epoch [1][1690/4982]\tlr: 7.741e-05, memory: 14281, loss: 1.7188\n",
"2023-07-02 20:59:04,057 - modelscope - INFO - epoch [1][1695/4982]\tlr: 7.729e-05, memory: 14281, loss: 2.5672\n",
"2023-07-02 20:59:07,177 - modelscope - INFO - epoch [1][1700/4982]\tlr: 7.716e-05, memory: 14281, loss: 1.0508\n",
"2023-07-02 20:59:09,355 - modelscope - INFO - epoch [1][1705/4982]\tlr: 7.704e-05, memory: 14281, loss: 1.8687\n",
"2023-07-02 20:59:11,209 - modelscope - INFO - epoch [1][1710/4982]\tlr: 7.691e-05, memory: 14281, loss: 2.7281\n",
"2023-07-02 20:59:14,101 - modelscope - INFO - epoch [1][1715/4982]\tlr: 7.679e-05, memory: 14281, loss: 1.0727\n",
"2023-07-02 20:59:16,660 - modelscope - INFO - epoch [1][1720/4982]\tlr: 7.666e-05, memory: 14281, loss: 1.6773\n",
"2023-07-02 20:59:18,798 - modelscope - INFO - epoch [1][1725/4982]\tlr: 7.654e-05, memory: 14281, loss: 2.3687\n",
"2023-07-02 20:59:20,724 - modelscope - INFO - epoch [1][1730/4982]\tlr: 7.641e-05, memory: 14281, loss: 1.9219\n",
"2023-07-02 20:59:23,591 - modelscope - INFO - epoch [1][1735/4982]\tlr: 7.629e-05, memory: 14281, loss: 1.5344\n",
"2023-07-02 20:59:27,214 - modelscope - INFO - epoch [1][1740/4982]\tlr: 7.616e-05, memory: 14281, loss: 0.5793\n",
"2023-07-02 20:59:29,708 - modelscope - INFO - epoch [1][1745/4982]\tlr: 7.603e-05, memory: 14281, loss: 1.4609\n",
"2023-07-02 20:59:32,082 - modelscope - INFO - epoch [1][1750/4982]\tlr: 7.591e-05, memory: 14281, loss: 1.0852\n",
"2023-07-02 20:59:34,683 - modelscope - INFO - epoch [1][1755/4982]\tlr: 7.578e-05, memory: 14281, loss: 1.5297\n",
"2023-07-02 20:59:36,962 - modelscope - INFO - epoch [1][1760/4982]\tlr: 7.565e-05, memory: 14281, loss: 2.9937\n",
"2023-07-02 20:59:39,715 - modelscope - INFO - epoch [1][1765/4982]\tlr: 7.553e-05, memory: 14281, loss: 2.1242\n",
"2023-07-02 20:59:42,455 - modelscope - INFO - epoch [1][1770/4982]\tlr: 7.540e-05, memory: 14281, loss: 2.3789\n",
"2023-07-02 20:59:45,020 - modelscope - INFO - epoch [1][1775/4982]\tlr: 7.527e-05, memory: 14281, loss: 1.8289\n",
"2023-07-02 20:59:46,865 - modelscope - INFO - epoch [1][1780/4982]\tlr: 7.515e-05, memory: 14281, loss: 2.0219\n",
"2023-07-02 20:59:50,367 - modelscope - INFO - epoch [1][1785/4982]\tlr: 7.502e-05, memory: 14281, loss: 2.6187\n",
"2023-07-02 20:59:52,626 - modelscope - INFO - epoch [1][1790/4982]\tlr: 7.489e-05, memory: 14281, loss: 2.3051\n",
"2023-07-02 20:59:54,711 - modelscope - INFO - epoch [1][1795/4982]\tlr: 7.476e-05, memory: 14281, loss: 2.3953\n",
"2023-07-02 20:59:56,419 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 21:01:03,053 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
"2023-07-02 21:01:03,080 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1600_acc0.7349275350570679\n",
"2023-07-02 21:01:03,082 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
"2023-07-02 21:01:03,106 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1600\n",
"2023-07-02 21:01:03,109 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7401, evaluation/loss: 1.8176, loss: 2.8625\n",
"2023-07-02 21:01:05,753 - modelscope - INFO - epoch [1][1805/4982]\tlr: 7.450e-05, memory: 14281, loss: 1.8352\n",
"2023-07-02 21:01:08,030 - modelscope - INFO - epoch [1][1810/4982]\tlr: 7.438e-05, memory: 14281, loss: 2.1453\n",
"2023-07-02 21:01:10,702 - modelscope - INFO - epoch [1][1815/4982]\tlr: 7.425e-05, memory: 14281, loss: 1.6281\n",
"2023-07-02 21:01:13,348 - modelscope - INFO - epoch [1][1820/4982]\tlr: 7.412e-05, memory: 14281, loss: 2.3008\n",
"2023-07-02 21:01:16,272 - modelscope - INFO - epoch [1][1825/4982]\tlr: 7.399e-05, memory: 14281, loss: 2.2414\n",
"2023-07-02 21:01:19,067 - modelscope - INFO - epoch [1][1830/4982]\tlr: 7.386e-05, memory: 14281, loss: 2.8672\n",
"2023-07-02 21:01:21,555 - modelscope - INFO - epoch [1][1835/4982]\tlr: 7.373e-05, memory: 14281, loss: 2.3172\n",
"2023-07-02 21:01:24,755 - modelscope - INFO - epoch [1][1840/4982]\tlr: 7.360e-05, memory: 14281, loss: 0.9746\n",
"2023-07-02 21:01:27,186 - modelscope - INFO - epoch [1][1845/4982]\tlr: 7.347e-05, memory: 14281, loss: 1.4992\n",
"2023-07-02 21:01:30,804 - modelscope - INFO - epoch [1][1850/4982]\tlr: 7.334e-05, memory: 14281, loss: 2.0031\n",
"2023-07-02 21:01:34,075 - modelscope - INFO - epoch [1][1855/4982]\tlr: 7.321e-05, memory: 14281, loss: 1.3766\n",
"2023-07-02 21:01:36,465 - modelscope - INFO - epoch [1][1860/4982]\tlr: 7.308e-05, memory: 14281, loss: 2.3203\n",
"2023-07-02 21:01:39,721 - modelscope - INFO - epoch [1][1865/4982]\tlr: 7.295e-05, memory: 14281, loss: 2.5617\n",
"2023-07-02 21:01:43,444 - modelscope - INFO - epoch [1][1870/4982]\tlr: 7.281e-05, memory: 14281, loss: 0.8551\n",
"2023-07-02 21:01:46,641 - modelscope - INFO - epoch [1][1875/4982]\tlr: 7.268e-05, memory: 14281, loss: 2.1117\n",
"2023-07-02 21:01:49,075 - modelscope - INFO - epoch [1][1880/4982]\tlr: 7.255e-05, memory: 14281, loss: 1.9414\n",
"2023-07-02 21:01:51,733 - modelscope - INFO - epoch [1][1885/4982]\tlr: 7.242e-05, memory: 14281, loss: 1.3805\n",
"2023-07-02 21:01:54,863 - modelscope - INFO - epoch [1][1890/4982]\tlr: 7.229e-05, memory: 14281, loss: 2.0562\n",
"2023-07-02 21:01:56,818 - modelscope - INFO - epoch [1][1895/4982]\tlr: 7.216e-05, memory: 14281, loss: 2.2391\n",
"2023-07-02 21:01:59,267 - modelscope - INFO - epoch [1][1900/4982]\tlr: 7.202e-05, memory: 14281, loss: 2.3027\n",
"2023-07-02 21:02:01,900 - modelscope - INFO - epoch [1][1905/4982]\tlr: 7.189e-05, memory: 14281, loss: 1.8711\n",
"2023-07-02 21:02:05,392 - modelscope - INFO - epoch [1][1910/4982]\tlr: 7.176e-05, memory: 14281, loss: 1.0352\n",
"2023-07-02 21:02:07,808 - modelscope - INFO - epoch [1][1915/4982]\tlr: 7.163e-05, memory: 14281, loss: 1.9133\n",
"2023-07-02 21:02:10,597 - modelscope - INFO - epoch [1][1920/4982]\tlr: 7.149e-05, memory: 14281, loss: 1.5922\n",
"2023-07-02 21:02:13,358 - modelscope - INFO - epoch [1][1925/4982]\tlr: 7.136e-05, memory: 14281, loss: 2.3203\n",
"2023-07-02 21:02:15,288 - modelscope - INFO - epoch [1][1930/4982]\tlr: 7.123e-05, memory: 14281, loss: 1.5707\n",
"2023-07-02 21:02:17,292 - modelscope - INFO - epoch [1][1935/4982]\tlr: 7.110e-05, memory: 14281, loss: 2.6484\n",
"2023-07-02 21:02:20,830 - modelscope - INFO - epoch [1][1940/4982]\tlr: 7.096e-05, memory: 14281, loss: 0.7172\n",
"2023-07-02 21:02:22,944 - modelscope - INFO - epoch [1][1945/4982]\tlr: 7.083e-05, memory: 14281, loss: 2.1992\n",
"2023-07-02 21:02:25,967 - modelscope - INFO - epoch [1][1950/4982]\tlr: 7.069e-05, memory: 14281, loss: 1.1105\n",
"2023-07-02 21:02:28,446 - modelscope - INFO - epoch [1][1955/4982]\tlr: 7.056e-05, memory: 14281, loss: 1.2781\n",
"2023-07-02 21:02:31,222 - modelscope - INFO - epoch [1][1960/4982]\tlr: 7.043e-05, memory: 14281, loss: 2.7156\n",
"2023-07-02 21:02:33,689 - modelscope - INFO - epoch [1][1965/4982]\tlr: 7.029e-05, memory: 14281, loss: 2.1977\n",
"2023-07-02 21:02:36,277 - modelscope - INFO - epoch [1][1970/4982]\tlr: 7.016e-05, memory: 14281, loss: 1.8652\n",
"2023-07-02 21:02:39,628 - modelscope - INFO - epoch [1][1975/4982]\tlr: 7.002e-05, memory: 14281, loss: 0.9414\n",
"2023-07-02 21:02:41,404 - modelscope - INFO - epoch [1][1980/4982]\tlr: 6.989e-05, memory: 14281, loss: 2.2672\n",
"2023-07-02 21:02:44,260 - modelscope - INFO - epoch [1][1985/4982]\tlr: 6.975e-05, memory: 14281, loss: 2.0039\n",
"2023-07-02 21:02:46,214 - modelscope - INFO - epoch [1][1990/4982]\tlr: 6.962e-05, memory: 14281, loss: 2.1391\n",
"2023-07-02 21:02:48,596 - modelscope - INFO - epoch [1][1995/4982]\tlr: 6.948e-05, memory: 14281, loss: 2.2766\n",
"2023-07-02 21:02:51,578 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
"2023-07-02 21:03:57,832 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
"2023-07-02 21:03:57,857 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1800_acc0.7400715351104736\n",
"2023-07-02 21:03:57,860 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
"2023-07-02 21:03:57,883 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1800\n",
"2023-07-02 21:03:57,885 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7442, evaluation/loss: 1.7936, loss: 1.5309\n",
"2023-07-02 21:04:00,725 - modelscope - INFO - epoch [1][2005/4982]\tlr: 6.921e-05, memory: 14281, loss: 1.2211\n",
"2023-07-02 21:04:02,917 - modelscope - INFO - epoch [1][2010/4982]\tlr: 6.908e-05, memory: 14281, loss: 2.4078\n",
"2023-07-02 21:04:05,194 - modelscope - INFO - epoch [1][2015/4982]\tlr: 6.894e-05, memory: 14281, loss: 2.0891\n",
"2023-07-02 21:04:06,825 - modelscope - INFO - epoch [1][2020/4982]\tlr: 6.881e-05, memory: 14281, loss: 2.4773\n",
"2023-07-02 21:04:09,109 - modelscope - INFO - epoch [1][2025/4982]\tlr: 6.867e-05, memory: 14281, loss: 1.7293\n",
"2023-07-02 21:04:12,824 - modelscope - INFO - epoch [1][2030/4982]\tlr: 6.854e-05, memory: 14281, loss: 0.9602\n",
"2023-07-02 21:04:15,460 - modelscope - INFO - epoch [1][2035/4982]\tlr: 6.840e-05, memory: 14281, loss: 1.4973\n",
"2023-07-02 21:04:18,540 - modelscope - INFO - epoch [1][2040/4982]\tlr: 6.826e-05, memory: 14281, loss: 2.0359\n",
"2023-07-02 21:04:21,265 - modelscope - INFO - epoch [1][2045/4982]\tlr: 6.813e-05, memory: 14281, loss: 1.5586\n",
"2023-07-02 21:04:24,566 - modelscope - INFO - epoch [1][2050/4982]\tlr: 6.799e-05, memory: 14281, loss: 1.3984\n",
"2023-07-02 21:04:27,716 - modelscope - INFO - epoch [1][2055/4982]\tlr: 6.785e-05, memory: 14281, loss: 1.6156\n",
"2023-07-02 21:04:29,775 - modelscope - INFO - epoch [1][2060/4982]\tlr: 6.772e-05, memory: 14281, loss: 2.4398\n",
"2023-07-02 21:04:33,407 - modelscope - INFO - epoch [1][2065/4982]\tlr: 6.758e-05, memory: 14281, loss: 1.2191\n",
"2023-07-02 21:04:35,873 - modelscope - INFO - epoch [1][2070/4982]\tlr: 6.744e-05, memory: 14281, loss: 1.5117\n",
"2023-07-02 21:04:38,406 - modelscope - INFO - epoch [1][2075/4982]\tlr: 6.731e-05, memory: 14281, loss: 1.5688\n",
"2023-07-02 21:04:40,452 - modelscope - INFO - epoch [1][2080/4982]\tlr: 6.717e-05, memory: 14281, loss: 1.3535\n",
"2023-07-02 21:04:42,464 - modelscope - INFO - epoch [1][2085/4982]\tlr: 6.703e-05, memory: 14281, loss: 3.2313\n",
"2023-07-02 21:04:44,395 - modelscope - INFO - epoch [1][2090/4982]\tlr: 6.689e-05, memory: 14281, loss: 1.8109\n",
"2023-07-02 21:04:47,097 - modelscope - INFO - epoch [1][2095/4982]\tlr: 6.676e-05, memory: 14281, loss: 2.6109\n",
"2023-07-02 21:04:50,488 - modelscope - INFO - epoch [1][2100/4982]\tlr: 6.662e-05, memory: 14281, loss: 2.3133\n",
"2023-07-02 21:04:53,478 - modelscope - INFO - epoch [1][2105/4982]\tlr: 6.648e-05, memory: 14281, loss: 1.5336\n",
"2023-07-02 21:04:56,669 - modelscope - INFO - epoch [1][2110/4982]\tlr: 6.634e-05, memory: 14281, loss: 1.8234\n",
"2023-07-02 21:05:00,502 - modelscope - INFO - epoch [1][2115/4982]\tlr: 6.620e-05, memory: 14329, loss: 3.0766\n",
"2023-07-02 21:05:02,541 - modelscope - INFO - epoch [1][2120/4982]\tlr: 6.607e-05, memory: 14329, loss: 1.3789\n",
"2023-07-02 21:05:05,161 - modelscope - INFO - epoch [1][2125/4982]\tlr: 6.593e-05, memory: 14329, loss: 1.5391\n",
"2023-07-02 21:05:07,009 - modelscope - INFO - epoch [1][2130/4982]\tlr: 6.579e-05, memory: 14329, loss: 2.6172\n",
"2023-07-02 21:05:10,521 - modelscope - INFO - epoch [1][2135/4982]\tlr: 6.565e-05, memory: 14329, loss: 1.7750\n",
"2023-07-02 21:05:13,068 - modelscope - INFO - epoch [1][2140/4982]\tlr: 6.551e-05, memory: 14329, loss: 2.1238\n",
"2023-07-02 21:05:15,637 - modelscope - INFO - epoch [1][2145/4982]\tlr: 6.537e-05, memory: 14329, loss: 2.5039\n",
"2023-07-02 21:05:18,628 - modelscope - INFO - epoch [1][2150/4982]\tlr: 6.523e-05, memory: 14329, loss: 1.6203\n",
"2023-07-02 21:05:21,523 - modelscope - INFO - epoch [1][2155/4982]\tlr: 6.510e-05, memory: 14329, loss: 0.9555\n",
"2023-07-02 21:05:24,213 - modelscope - INFO - epoch [1][2160/4982]\tlr: 6.496e-05, memory: 14329, loss: 2.1133\n",
"2023-07-02 21:05:27,402 - modelscope - INFO - epoch [1][2165/4982]\tlr: 6.482e-05, memory: 14329, loss: 1.1963\n",
"2023-07-02 21:05:29,840 - modelscope - INFO - epoch [1][2170/4982]\tlr: 6.468e-05, memory: 14329, loss: 1.3637\n",
"2023-07-02 21:05:32,853 - modelscope - INFO - epoch [1][2175/4982]\tlr: 6.454e-05, memory: 14329, loss: 1.7201\n",
"2023-07-02 21:05:35,628 - modelscope - INFO - epoch [1][2180/4982]\tlr: 6.440e-05, memory: 14329, loss: 2.0109\n",
"2023-07-02 21:05:38,589 - modelscope - INFO - epoch [1][2185/4982]\tlr: 6.426e-05, memory: 14329, loss: 1.2418\n",
"2023-07-02 21:05:40,918 - modelscope - INFO - epoch [1][2190/4982]\tlr: 6.412e-05, memory: 14329, loss: 2.0758\n",
"2023-07-02 21:05:43,421 - modelscope - INFO - epoch [1][2195/4982]\tlr: 6.398e-05, memory: 14329, loss: 1.7094\n",
"2023-07-02 21:05:46,523 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.21it/s]\n",
"2023-07-02 21:06:53,212 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
"2023-07-02 21:06:53,240 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2000_acc0.7442383766174316\n",
"2023-07-02 21:06:53,243 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
"2023-07-02 21:06:53,269 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2000\n",
"2023-07-02 21:06:53,272 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7494, evaluation/loss: 1.7767, loss: 2.1570\n",
"2023-07-02 21:06:55,998 - modelscope - INFO - epoch [1][2205/4982]\tlr: 6.370e-05, memory: 14329, loss: 1.3469\n",
"2023-07-02 21:06:59,535 - modelscope - INFO - epoch [1][2210/4982]\tlr: 6.356e-05, memory: 14329, loss: 1.3730\n",
"2023-07-02 21:07:01,992 - modelscope - INFO - epoch [1][2215/4982]\tlr: 6.342e-05, memory: 14329, loss: 2.2066\n",
"2023-07-02 21:07:04,789 - modelscope - INFO - epoch [1][2220/4982]\tlr: 6.328e-05, memory: 14329, loss: 1.7098\n",
"2023-07-02 21:07:07,714 - modelscope - INFO - epoch [1][2225/4982]\tlr: 6.314e-05, memory: 14329, loss: 2.0953\n",
"2023-07-02 21:07:09,812 - modelscope - INFO - epoch [1][2230/4982]\tlr: 6.300e-05, memory: 14329, loss: 2.3914\n",
"2023-07-02 21:07:12,315 - modelscope - INFO - epoch [1][2235/4982]\tlr: 6.286e-05, memory: 14329, loss: 2.6797\n",
"2023-07-02 21:07:15,918 - modelscope - INFO - epoch [1][2240/4982]\tlr: 6.272e-05, memory: 14329, loss: 1.3217\n",
"2023-07-02 21:07:19,044 - modelscope - INFO - epoch [1][2245/4982]\tlr: 6.258e-05, memory: 14329, loss: 1.4527\n",
"2023-07-02 21:07:21,636 - modelscope - INFO - epoch [1][2250/4982]\tlr: 6.244e-05, memory: 14329, loss: 2.1770\n",
"2023-07-02 21:07:23,761 - modelscope - INFO - epoch [1][2255/4982]\tlr: 6.230e-05, memory: 14329, loss: 1.8191\n",
"2023-07-02 21:07:25,994 - modelscope - INFO - epoch [1][2260/4982]\tlr: 6.216e-05, memory: 14329, loss: 1.3582\n",
"2023-07-02 21:07:28,770 - modelscope - INFO - epoch [1][2265/4982]\tlr: 6.202e-05, memory: 14329, loss: 1.0121\n",
"2023-07-02 21:07:32,193 - modelscope - INFO - epoch [1][2270/4982]\tlr: 6.188e-05, memory: 14329, loss: 1.0039\n",
"2023-07-02 21:07:34,881 - modelscope - INFO - epoch [1][2275/4982]\tlr: 6.174e-05, memory: 14329, loss: 1.2828\n",
"2023-07-02 21:07:37,688 - modelscope - INFO - epoch [1][2280/4982]\tlr: 6.159e-05, memory: 14329, loss: 1.4516\n",
"2023-07-02 21:07:40,006 - modelscope - INFO - epoch [1][2285/4982]\tlr: 6.145e-05, memory: 14329, loss: 1.5963\n",
"2023-07-02 21:07:42,993 - modelscope - INFO - epoch [1][2290/4982]\tlr: 6.131e-05, memory: 14329, loss: 2.7687\n",
"2023-07-02 21:07:46,133 - modelscope - INFO - epoch [1][2295/4982]\tlr: 6.117e-05, memory: 14329, loss: 1.5977\n",
"2023-07-02 21:07:47,508 - modelscope - INFO - epoch [1][2300/4982]\tlr: 6.103e-05, memory: 14329, loss: 2.5945\n",
"2023-07-02 21:07:50,902 - modelscope - INFO - epoch [1][2305/4982]\tlr: 6.089e-05, memory: 14329, loss: 1.2125\n",
"2023-07-02 21:07:53,059 - modelscope - INFO - epoch [1][2310/4982]\tlr: 6.075e-05, memory: 14329, loss: 2.2883\n",
"2023-07-02 21:07:56,237 - modelscope - INFO - epoch [1][2315/4982]\tlr: 6.061e-05, memory: 14329, loss: 0.8787\n",
"2023-07-02 21:07:59,345 - modelscope - INFO - epoch [1][2320/4982]\tlr: 6.046e-05, memory: 14329, loss: 2.6320\n",
"2023-07-02 21:08:02,587 - modelscope - INFO - epoch [1][2325/4982]\tlr: 6.032e-05, memory: 14329, loss: 1.4213\n",
"2023-07-02 21:08:04,652 - modelscope - INFO - epoch [1][2330/4982]\tlr: 6.018e-05, memory: 14329, loss: 2.7547\n",
"2023-07-02 21:08:07,208 - modelscope - INFO - epoch [1][2335/4982]\tlr: 6.004e-05, memory: 14329, loss: 2.1891\n",
"2023-07-02 21:08:09,836 - modelscope - INFO - epoch [1][2340/4982]\tlr: 5.990e-05, memory: 14329, loss: 1.9711\n",
"2023-07-02 21:08:12,642 - modelscope - INFO - epoch [1][2345/4982]\tlr: 5.976e-05, memory: 14329, loss: 1.2281\n",
"2023-07-02 21:08:15,772 - modelscope - INFO - epoch [1][2350/4982]\tlr: 5.961e-05, memory: 14329, loss: 1.1650\n",
"2023-07-02 21:08:18,568 - modelscope - INFO - epoch [1][2355/4982]\tlr: 5.947e-05, memory: 14329, loss: 1.0545\n",
"2023-07-02 21:08:21,580 - modelscope - INFO - epoch [1][2360/4982]\tlr: 5.933e-05, memory: 14329, loss: 2.3699\n",
"2023-07-02 21:08:24,345 - modelscope - INFO - epoch [1][2365/4982]\tlr: 5.919e-05, memory: 14329, loss: 1.7188\n",
"2023-07-02 21:08:27,132 - modelscope - INFO - epoch [1][2370/4982]\tlr: 5.905e-05, memory: 14329, loss: 0.8174\n",
"2023-07-02 21:08:28,995 - modelscope - INFO - epoch [1][2375/4982]\tlr: 5.891e-05, memory: 14329, loss: 2.0500\n",
"2023-07-02 21:08:32,221 - modelscope - INFO - epoch [1][2380/4982]\tlr: 5.876e-05, memory: 14329, loss: 0.8354\n",
"2023-07-02 21:08:34,747 - modelscope - INFO - epoch [1][2385/4982]\tlr: 5.862e-05, memory: 14329, loss: 1.3457\n",
"2023-07-02 21:08:38,256 - modelscope - INFO - epoch [1][2390/4982]\tlr: 5.848e-05, memory: 14329, loss: 1.9180\n",
"2023-07-02 21:08:40,701 - modelscope - INFO - epoch [1][2395/4982]\tlr: 5.834e-05, memory: 14329, loss: 1.1666\n",
"2023-07-02 21:08:43,933 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:09:50,373 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
"2023-07-02 21:09:50,402 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2200_acc0.749400794506073\n",
"2023-07-02 21:09:50,404 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
"2023-07-02 21:09:50,432 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2200\n",
"2023-07-02 21:09:50,435 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7535, evaluation/loss: 1.7703, loss: 1.5938\n",
"2023-07-02 21:09:53,136 - modelscope - INFO - epoch [1][2405/4982]\tlr: 5.805e-05, memory: 14329, loss: 3.0355\n",
"2023-07-02 21:09:55,673 - modelscope - INFO - epoch [1][2410/4982]\tlr: 5.791e-05, memory: 14329, loss: 1.9070\n",
"2023-07-02 21:09:58,239 - modelscope - INFO - epoch [1][2415/4982]\tlr: 5.777e-05, memory: 14329, loss: 1.1090\n",
"2023-07-02 21:10:00,413 - modelscope - INFO - epoch [1][2420/4982]\tlr: 5.763e-05, memory: 14329, loss: 1.3535\n",
"2023-07-02 21:10:02,887 - modelscope - INFO - epoch [1][2425/4982]\tlr: 5.748e-05, memory: 14329, loss: 1.4563\n",
"2023-07-02 21:10:05,462 - modelscope - INFO - epoch [1][2430/4982]\tlr: 5.734e-05, memory: 14329, loss: 2.2436\n",
"2023-07-02 21:10:08,549 - modelscope - INFO - epoch [1][2435/4982]\tlr: 5.720e-05, memory: 14329, loss: 1.8266\n",
"2023-07-02 21:10:11,226 - modelscope - INFO - epoch [1][2440/4982]\tlr: 5.706e-05, memory: 14329, loss: 1.8402\n",
"2023-07-02 21:10:13,579 - modelscope - INFO - epoch [1][2445/4982]\tlr: 5.691e-05, memory: 14329, loss: 2.0742\n",
"2023-07-02 21:10:15,828 - modelscope - INFO - epoch [1][2450/4982]\tlr: 5.677e-05, memory: 14329, loss: 1.5211\n",
"2023-07-02 21:10:18,658 - modelscope - INFO - epoch [1][2455/4982]\tlr: 5.663e-05, memory: 14329, loss: 0.9520\n",
"2023-07-02 21:10:21,705 - modelscope - INFO - epoch [1][2460/4982]\tlr: 5.649e-05, memory: 14329, loss: 1.4098\n",
"2023-07-02 21:10:24,494 - modelscope - INFO - epoch [1][2465/4982]\tlr: 5.635e-05, memory: 14329, loss: 1.5748\n",
"2023-07-02 21:10:27,349 - modelscope - INFO - epoch [1][2470/4982]\tlr: 5.620e-05, memory: 14329, loss: 2.5328\n",
"2023-07-02 21:10:29,516 - modelscope - INFO - epoch [1][2475/4982]\tlr: 5.606e-05, memory: 14329, loss: 1.2904\n",
"2023-07-02 21:10:32,690 - modelscope - INFO - epoch [1][2480/4982]\tlr: 5.592e-05, memory: 14329, loss: 0.5270\n",
"2023-07-02 21:10:35,469 - modelscope - INFO - epoch [1][2485/4982]\tlr: 5.578e-05, memory: 14329, loss: 0.9842\n",
"2023-07-02 21:10:37,617 - modelscope - INFO - epoch [1][2490/4982]\tlr: 5.563e-05, memory: 14329, loss: 2.4695\n",
"2023-07-02 21:10:40,562 - modelscope - INFO - epoch [1][2495/4982]\tlr: 5.549e-05, memory: 14329, loss: 1.2441\n",
"2023-07-02 21:10:42,074 - modelscope - INFO - epoch [1][2500/4982]\tlr: 5.535e-05, memory: 14329, loss: 2.1055\n",
"2023-07-02 21:10:44,402 - modelscope - INFO - epoch [1][2505/4982]\tlr: 5.521e-05, memory: 14329, loss: 1.5461\n",
"2023-07-02 21:10:47,254 - modelscope - INFO - epoch [1][2510/4982]\tlr: 5.506e-05, memory: 14329, loss: 2.3160\n",
"2023-07-02 21:10:50,538 - modelscope - INFO - epoch [1][2515/4982]\tlr: 5.492e-05, memory: 14329, loss: 1.4293\n",
"2023-07-02 21:10:53,161 - modelscope - INFO - epoch [1][2520/4982]\tlr: 5.478e-05, memory: 14329, loss: 2.6732\n",
"2023-07-02 21:10:55,975 - modelscope - INFO - epoch [1][2525/4982]\tlr: 5.464e-05, memory: 14329, loss: 1.1059\n",
"2023-07-02 21:10:59,325 - modelscope - INFO - epoch [1][2530/4982]\tlr: 5.449e-05, memory: 14329, loss: 0.7672\n",
"2023-07-02 21:11:02,511 - modelscope - INFO - epoch [1][2535/4982]\tlr: 5.435e-05, memory: 14329, loss: 1.0480\n",
"2023-07-02 21:11:04,652 - modelscope - INFO - epoch [1][2540/4982]\tlr: 5.421e-05, memory: 14329, loss: 1.4984\n",
"2023-07-02 21:11:08,281 - modelscope - INFO - epoch [1][2545/4982]\tlr: 5.407e-05, memory: 14329, loss: 1.1805\n",
"2023-07-02 21:11:10,297 - modelscope - INFO - epoch [1][2550/4982]\tlr: 5.392e-05, memory: 14329, loss: 2.0984\n",
"2023-07-02 21:11:13,563 - modelscope - INFO - epoch [1][2555/4982]\tlr: 5.378e-05, memory: 14329, loss: 0.5590\n",
"2023-07-02 21:11:15,666 - modelscope - INFO - epoch [1][2560/4982]\tlr: 5.364e-05, memory: 14329, loss: 1.8969\n",
"2023-07-02 21:11:17,895 - modelscope - INFO - epoch [1][2565/4982]\tlr: 5.350e-05, memory: 14329, loss: 2.2344\n",
"2023-07-02 21:11:20,533 - modelscope - INFO - epoch [1][2570/4982]\tlr: 5.335e-05, memory: 14329, loss: 1.2381\n",
"2023-07-02 21:11:23,834 - modelscope - INFO - epoch [1][2575/4982]\tlr: 5.321e-05, memory: 14329, loss: 1.7533\n",
"2023-07-02 21:11:26,883 - modelscope - INFO - epoch [1][2580/4982]\tlr: 5.307e-05, memory: 14329, loss: 0.9559\n",
"2023-07-02 21:11:29,602 - modelscope - INFO - epoch [1][2585/4982]\tlr: 5.293e-05, memory: 14329, loss: 1.1484\n",
"2023-07-02 21:11:31,820 - modelscope - INFO - epoch [1][2590/4982]\tlr: 5.279e-05, memory: 14329, loss: 1.4527\n",
"2023-07-02 21:11:33,946 - modelscope - INFO - epoch [1][2595/4982]\tlr: 5.264e-05, memory: 14329, loss: 2.1156\n",
"2023-07-02 21:11:36,808 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:12:43,304 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
"2023-07-02 21:12:43,335 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2400_acc0.7534938454627991\n",
"2023-07-02 21:12:43,337 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
"2023-07-02 21:12:43,366 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2400\n",
"2023-07-02 21:12:43,369 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7577, evaluation/loss: 1.7432, loss: 1.3414\n",
"2023-07-02 21:12:45,632 - modelscope - INFO - epoch [1][2605/4982]\tlr: 5.236e-05, memory: 14329, loss: 1.1031\n",
"2023-07-02 21:12:47,931 - modelscope - INFO - epoch [1][2610/4982]\tlr: 5.222e-05, memory: 14329, loss: 2.4422\n",
"2023-07-02 21:12:50,545 - modelscope - INFO - epoch [1][2615/4982]\tlr: 5.207e-05, memory: 14329, loss: 1.2281\n",
"2023-07-02 21:12:53,002 - modelscope - INFO - epoch [1][2620/4982]\tlr: 5.193e-05, memory: 14329, loss: 1.9912\n",
"2023-07-02 21:12:55,893 - modelscope - INFO - epoch [1][2625/4982]\tlr: 5.179e-05, memory: 14329, loss: 1.7354\n",
"2023-07-02 21:12:58,266 - modelscope - INFO - epoch [1][2630/4982]\tlr: 5.165e-05, memory: 14329, loss: 3.0562\n",
"2023-07-02 21:13:00,767 - modelscope - INFO - epoch [1][2635/4982]\tlr: 5.151e-05, memory: 14329, loss: 1.7664\n",
"2023-07-02 21:13:04,043 - modelscope - INFO - epoch [1][2640/4982]\tlr: 5.136e-05, memory: 14329, loss: 1.7547\n",
"2023-07-02 21:13:06,487 - modelscope - INFO - epoch [1][2645/4982]\tlr: 5.122e-05, memory: 14329, loss: 2.0453\n",
"2023-07-02 21:13:09,480 - modelscope - INFO - epoch [1][2650/4982]\tlr: 5.108e-05, memory: 14329, loss: 1.5508\n",
"2023-07-02 21:13:11,484 - modelscope - INFO - epoch [1][2655/4982]\tlr: 5.094e-05, memory: 14329, loss: 2.8527\n",
"2023-07-02 21:13:14,637 - modelscope - INFO - epoch [1][2660/4982]\tlr: 5.080e-05, memory: 14329, loss: 0.4787\n",
"2023-07-02 21:13:17,215 - modelscope - INFO - epoch [1][2665/4982]\tlr: 5.066e-05, memory: 14329, loss: 1.1926\n",
"2023-07-02 21:13:19,892 - modelscope - INFO - epoch [1][2670/4982]\tlr: 5.051e-05, memory: 14329, loss: 2.3055\n",
"2023-07-02 21:13:21,987 - modelscope - INFO - epoch [1][2675/4982]\tlr: 5.037e-05, memory: 14329, loss: 1.6938\n",
"2023-07-02 21:13:24,761 - modelscope - INFO - epoch [1][2680/4982]\tlr: 5.023e-05, memory: 14329, loss: 2.2922\n",
"2023-07-02 21:13:26,815 - modelscope - INFO - epoch [1][2685/4982]\tlr: 5.009e-05, memory: 14329, loss: 1.6898\n",
"2023-07-02 21:13:29,236 - modelscope - INFO - epoch [1][2690/4982]\tlr: 4.995e-05, memory: 14329, loss: 2.2826\n",
"2023-07-02 21:13:31,582 - modelscope - INFO - epoch [1][2695/4982]\tlr: 4.981e-05, memory: 14329, loss: 1.7828\n",
"2023-07-02 21:13:33,912 - modelscope - INFO - epoch [1][2700/4982]\tlr: 4.966e-05, memory: 14329, loss: 1.8785\n",
"2023-07-02 21:13:36,729 - modelscope - INFO - epoch [1][2705/4982]\tlr: 4.952e-05, memory: 14329, loss: 1.4273\n",
"2023-07-02 21:13:38,262 - modelscope - INFO - epoch [1][2710/4982]\tlr: 4.938e-05, memory: 14329, loss: 1.5227\n",
"2023-07-02 21:13:40,572 - modelscope - INFO - epoch [1][2715/4982]\tlr: 4.924e-05, memory: 14329, loss: 2.0828\n",
"2023-07-02 21:13:43,610 - modelscope - INFO - epoch [1][2720/4982]\tlr: 4.910e-05, memory: 14329, loss: 1.7301\n",
"2023-07-02 21:13:46,147 - modelscope - INFO - epoch [1][2725/4982]\tlr: 4.896e-05, memory: 14329, loss: 1.8305\n",
"2023-07-02 21:13:49,457 - modelscope - INFO - epoch [1][2730/4982]\tlr: 4.882e-05, memory: 14329, loss: 1.6883\n",
"2023-07-02 21:13:51,690 - modelscope - INFO - epoch [1][2735/4982]\tlr: 4.868e-05, memory: 14329, loss: 1.3963\n",
"2023-07-02 21:13:54,487 - modelscope - INFO - epoch [1][2740/4982]\tlr: 4.854e-05, memory: 14329, loss: 1.2293\n",
"2023-07-02 21:13:56,303 - modelscope - INFO - epoch [1][2745/4982]\tlr: 4.839e-05, memory: 14329, loss: 1.7289\n",
"2023-07-02 21:13:59,073 - modelscope - INFO - epoch [1][2750/4982]\tlr: 4.825e-05, memory: 14329, loss: 1.1637\n",
"2023-07-02 21:14:02,327 - modelscope - INFO - epoch [1][2755/4982]\tlr: 4.811e-05, memory: 14329, loss: 1.3336\n",
"2023-07-02 21:14:05,192 - modelscope - INFO - epoch [1][2760/4982]\tlr: 4.797e-05, memory: 14329, loss: 0.9352\n",
"2023-07-02 21:14:07,032 - modelscope - INFO - epoch [1][2765/4982]\tlr: 4.783e-05, memory: 14329, loss: 1.9258\n",
"2023-07-02 21:14:10,206 - modelscope - INFO - epoch [1][2770/4982]\tlr: 4.769e-05, memory: 14329, loss: 2.0555\n",
"2023-07-02 21:14:12,659 - modelscope - INFO - epoch [1][2775/4982]\tlr: 4.755e-05, memory: 14329, loss: 1.5836\n",
"2023-07-02 21:14:15,156 - modelscope - INFO - epoch [1][2780/4982]\tlr: 4.741e-05, memory: 14329, loss: 1.6203\n",
"2023-07-02 21:14:18,171 - modelscope - INFO - epoch [1][2785/4982]\tlr: 4.727e-05, memory: 14329, loss: 2.1402\n",
"2023-07-02 21:14:20,575 - modelscope - INFO - epoch [1][2790/4982]\tlr: 4.713e-05, memory: 14329, loss: 1.6504\n",
"2023-07-02 21:14:23,247 - modelscope - INFO - epoch [1][2795/4982]\tlr: 4.699e-05, memory: 14329, loss: 1.7109\n",
"2023-07-02 21:14:26,026 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:15:32,451 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
"2023-07-02 21:15:32,483 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2600_acc0.7577160000801086\n",
"2023-07-02 21:15:32,485 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
"2023-07-02 21:15:32,515 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2600\n",
"2023-07-02 21:15:32,518 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7621, evaluation/loss: 1.7451, loss: 2.2227\n",
"2023-07-02 21:15:34,950 - modelscope - INFO - epoch [1][2805/4982]\tlr: 4.671e-05, memory: 14329, loss: 2.0086\n",
"2023-07-02 21:15:38,272 - modelscope - INFO - epoch [1][2810/4982]\tlr: 4.657e-05, memory: 14329, loss: 0.8770\n",
"2023-07-02 21:15:41,346 - modelscope - INFO - epoch [1][2815/4982]\tlr: 4.643e-05, memory: 14329, loss: 0.7887\n",
"2023-07-02 21:15:43,033 - modelscope - INFO - epoch [1][2820/4982]\tlr: 4.629e-05, memory: 14329, loss: 2.8648\n",
"2023-07-02 21:15:45,965 - modelscope - INFO - epoch [1][2825/4982]\tlr: 4.615e-05, memory: 14329, loss: 1.9832\n",
"2023-07-02 21:15:48,381 - modelscope - INFO - epoch [1][2830/4982]\tlr: 4.601e-05, memory: 14329, loss: 1.4816\n",
"2023-07-02 21:15:51,262 - modelscope - INFO - epoch [1][2835/4982]\tlr: 4.587e-05, memory: 14329, loss: 1.3080\n",
"2023-07-02 21:15:53,969 - modelscope - INFO - epoch [1][2840/4982]\tlr: 4.573e-05, memory: 14329, loss: 1.2664\n",
"2023-07-02 21:15:56,145 - modelscope - INFO - epoch [1][2845/4982]\tlr: 4.559e-05, memory: 14329, loss: 2.4719\n",
"2023-07-02 21:15:58,623 - modelscope - INFO - epoch [1][2850/4982]\tlr: 4.545e-05, memory: 14329, loss: 1.0096\n",
"2023-07-02 21:16:01,537 - modelscope - INFO - epoch [1][2855/4982]\tlr: 4.532e-05, memory: 14329, loss: 1.7023\n",
"2023-07-02 21:16:05,216 - modelscope - INFO - epoch [1][2860/4982]\tlr: 4.518e-05, memory: 14329, loss: 1.8641\n",
"2023-07-02 21:16:08,050 - modelscope - INFO - epoch [1][2865/4982]\tlr: 4.504e-05, memory: 14329, loss: 2.1398\n",
"2023-07-02 21:16:10,270 - modelscope - INFO - epoch [1][2870/4982]\tlr: 4.490e-05, memory: 14329, loss: 1.9180\n",
"2023-07-02 21:16:12,856 - modelscope - INFO - epoch [1][2875/4982]\tlr: 4.476e-05, memory: 14329, loss: 1.6426\n",
"2023-07-02 21:16:15,831 - modelscope - INFO - epoch [1][2880/4982]\tlr: 4.462e-05, memory: 14329, loss: 1.9609\n",
"2023-07-02 21:16:18,475 - modelscope - INFO - epoch [1][2885/4982]\tlr: 4.448e-05, memory: 14329, loss: 1.3818\n",
"2023-07-02 21:16:21,513 - modelscope - INFO - epoch [1][2890/4982]\tlr: 4.434e-05, memory: 14329, loss: 1.8543\n",
"2023-07-02 21:16:23,561 - modelscope - INFO - epoch [1][2895/4982]\tlr: 4.421e-05, memory: 14329, loss: 1.6133\n",
"2023-07-02 21:16:25,999 - modelscope - INFO - epoch [1][2900/4982]\tlr: 4.407e-05, memory: 14329, loss: 2.2039\n",
"2023-07-02 21:16:28,248 - modelscope - INFO - epoch [1][2905/4982]\tlr: 4.393e-05, memory: 14329, loss: 1.5797\n",
"2023-07-02 21:16:31,059 - modelscope - INFO - epoch [1][2910/4982]\tlr: 4.379e-05, memory: 14329, loss: 1.0002\n",
"2023-07-02 21:16:33,522 - modelscope - INFO - epoch [1][2915/4982]\tlr: 4.365e-05, memory: 14329, loss: 1.5379\n",
"2023-07-02 21:16:35,881 - modelscope - INFO - epoch [1][2920/4982]\tlr: 4.352e-05, memory: 14329, loss: 2.8797\n",
"2023-07-02 21:16:38,582 - modelscope - INFO - epoch [1][2925/4982]\tlr: 4.338e-05, memory: 14329, loss: 2.2234\n",
"2023-07-02 21:16:41,105 - modelscope - INFO - epoch [1][2930/4982]\tlr: 4.324e-05, memory: 14329, loss: 0.9779\n",
"2023-07-02 21:16:43,610 - modelscope - INFO - epoch [1][2935/4982]\tlr: 4.310e-05, memory: 14329, loss: 1.1336\n",
"2023-07-02 21:16:46,978 - modelscope - INFO - epoch [1][2940/4982]\tlr: 4.297e-05, memory: 14329, loss: 1.7703\n",
"2023-07-02 21:16:49,719 - modelscope - INFO - epoch [1][2945/4982]\tlr: 4.283e-05, memory: 14329, loss: 2.1102\n",
"2023-07-02 21:16:52,425 - modelscope - INFO - epoch [1][2950/4982]\tlr: 4.269e-05, memory: 14329, loss: 1.6873\n",
"2023-07-02 21:16:54,893 - modelscope - INFO - epoch [1][2955/4982]\tlr: 4.256e-05, memory: 14329, loss: 1.8313\n",
"2023-07-02 21:16:58,211 - modelscope - INFO - epoch [1][2960/4982]\tlr: 4.242e-05, memory: 14329, loss: 1.2132\n",
"2023-07-02 21:17:01,430 - modelscope - INFO - epoch [1][2965/4982]\tlr: 4.228e-05, memory: 14329, loss: 1.5578\n",
"2023-07-02 21:17:04,190 - modelscope - INFO - epoch [1][2970/4982]\tlr: 4.215e-05, memory: 14329, loss: 1.1242\n",
"2023-07-02 21:17:07,777 - modelscope - INFO - epoch [1][2975/4982]\tlr: 4.201e-05, memory: 14329, loss: 1.3516\n",
"2023-07-02 21:17:11,666 - modelscope - INFO - epoch [1][2980/4982]\tlr: 4.187e-05, memory: 14329, loss: 1.2953\n",
"2023-07-02 21:17:14,548 - modelscope - INFO - epoch [1][2985/4982]\tlr: 4.174e-05, memory: 14329, loss: 2.3777\n",
"2023-07-02 21:17:17,244 - modelscope - INFO - epoch [1][2990/4982]\tlr: 4.160e-05, memory: 14329, loss: 1.8803\n",
"2023-07-02 21:17:20,544 - modelscope - INFO - epoch [1][2995/4982]\tlr: 4.147e-05, memory: 14329, loss: 1.1699\n",
"2023-07-02 21:17:22,682 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 21:18:29,245 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
"2023-07-02 21:18:29,273 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2800_acc0.7621409296989441\n",
"2023-07-02 21:18:29,275 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
"2023-07-02 21:18:29,301 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2800\n",
"2023-07-02 21:18:29,303 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7655, evaluation/loss: 1.7432, loss: 1.2258\n",
"2023-07-02 21:18:31,804 - modelscope - INFO - epoch [1][3005/4982]\tlr: 4.120e-05, memory: 14329, loss: 2.2777\n",
"2023-07-02 21:18:35,465 - modelscope - INFO - epoch [1][3010/4982]\tlr: 4.106e-05, memory: 14329, loss: 1.4781\n",
"2023-07-02 21:18:38,255 - modelscope - INFO - epoch [1][3015/4982]\tlr: 4.092e-05, memory: 14329, loss: 1.4242\n",
"2023-07-02 21:18:41,641 - modelscope - INFO - epoch [1][3020/4982]\tlr: 4.079e-05, memory: 14449, loss: 2.5148\n",
"2023-07-02 21:18:44,184 - modelscope - INFO - epoch [1][3025/4982]\tlr: 4.065e-05, memory: 14449, loss: 1.9086\n",
"2023-07-02 21:18:47,235 - modelscope - INFO - epoch [1][3030/4982]\tlr: 4.052e-05, memory: 14449, loss: 2.3363\n",
"2023-07-02 21:18:50,005 - modelscope - INFO - epoch [1][3035/4982]\tlr: 4.039e-05, memory: 14449, loss: 1.4543\n",
"2023-07-02 21:18:52,482 - modelscope - INFO - epoch [1][3040/4982]\tlr: 4.025e-05, memory: 14449, loss: 2.1744\n",
"2023-07-02 21:18:55,300 - modelscope - INFO - epoch [1][3045/4982]\tlr: 4.012e-05, memory: 14449, loss: 1.8871\n",
"2023-07-02 21:18:58,643 - modelscope - INFO - epoch [1][3050/4982]\tlr: 3.998e-05, memory: 14449, loss: 1.6809\n",
"2023-07-02 21:19:01,867 - modelscope - INFO - epoch [1][3055/4982]\tlr: 3.985e-05, memory: 14449, loss: 2.7977\n",
"2023-07-02 21:19:05,785 - modelscope - INFO - epoch [1][3060/4982]\tlr: 3.971e-05, memory: 14449, loss: 1.6258\n",
"2023-07-02 21:19:09,029 - modelscope - INFO - epoch [1][3065/4982]\tlr: 3.958e-05, memory: 14449, loss: 0.9796\n",
"2023-07-02 21:19:11,551 - modelscope - INFO - epoch [1][3070/4982]\tlr: 3.945e-05, memory: 14449, loss: 2.2262\n",
"2023-07-02 21:19:14,238 - modelscope - INFO - epoch [1][3075/4982]\tlr: 3.931e-05, memory: 14449, loss: 1.3527\n",
"2023-07-02 21:19:16,361 - modelscope - INFO - epoch [1][3080/4982]\tlr: 3.918e-05, memory: 14449, loss: 1.6689\n",
"2023-07-02 21:19:18,345 - modelscope - INFO - epoch [1][3085/4982]\tlr: 3.905e-05, memory: 14449, loss: 2.9641\n",
"2023-07-02 21:19:20,849 - modelscope - INFO - epoch [1][3090/4982]\tlr: 3.891e-05, memory: 14449, loss: 1.6723\n",
"2023-07-02 21:19:23,101 - modelscope - INFO - epoch [1][3095/4982]\tlr: 3.878e-05, memory: 14449, loss: 2.7703\n",
"2023-07-02 21:19:25,726 - modelscope - INFO - epoch [1][3100/4982]\tlr: 3.865e-05, memory: 14449, loss: 0.8043\n",
"2023-07-02 21:19:28,252 - modelscope - INFO - epoch [1][3105/4982]\tlr: 3.852e-05, memory: 14449, loss: 2.0820\n",
"2023-07-02 21:19:30,440 - modelscope - INFO - epoch [1][3110/4982]\tlr: 3.838e-05, memory: 14449, loss: 2.3492\n",
"2023-07-02 21:19:33,686 - modelscope - INFO - epoch [1][3115/4982]\tlr: 3.825e-05, memory: 14449, loss: 0.8090\n",
"2023-07-02 21:19:36,596 - modelscope - INFO - epoch [1][3120/4982]\tlr: 3.812e-05, memory: 14449, loss: 0.6620\n",
"2023-07-02 21:19:38,596 - modelscope - INFO - epoch [1][3125/4982]\tlr: 3.799e-05, memory: 14449, loss: 2.6781\n",
"2023-07-02 21:19:41,115 - modelscope - INFO - epoch [1][3130/4982]\tlr: 3.786e-05, memory: 14449, loss: 1.4328\n",
"2023-07-02 21:19:44,046 - modelscope - INFO - epoch [1][3135/4982]\tlr: 3.772e-05, memory: 14449, loss: 1.3764\n",
"2023-07-02 21:19:47,148 - modelscope - INFO - epoch [1][3140/4982]\tlr: 3.759e-05, memory: 14449, loss: 1.0316\n",
"2023-07-02 21:19:50,062 - modelscope - INFO - epoch [1][3145/4982]\tlr: 3.746e-05, memory: 14449, loss: 1.6078\n",
"2023-07-02 21:19:52,899 - modelscope - INFO - epoch [1][3150/4982]\tlr: 3.733e-05, memory: 14449, loss: 1.9883\n",
"2023-07-02 21:19:55,621 - modelscope - INFO - epoch [1][3155/4982]\tlr: 3.720e-05, memory: 14449, loss: 1.6697\n",
"2023-07-02 21:19:57,950 - modelscope - INFO - epoch [1][3160/4982]\tlr: 3.707e-05, memory: 14449, loss: 2.7109\n",
"2023-07-02 21:20:00,606 - modelscope - INFO - epoch [1][3165/4982]\tlr: 3.694e-05, memory: 14449, loss: 1.5930\n",
"2023-07-02 21:20:04,380 - modelscope - INFO - epoch [1][3170/4982]\tlr: 3.681e-05, memory: 14449, loss: 1.5211\n",
"2023-07-02 21:20:07,165 - modelscope - INFO - epoch [1][3175/4982]\tlr: 3.668e-05, memory: 14449, loss: 1.1980\n",
"2023-07-02 21:20:09,788 - modelscope - INFO - epoch [1][3180/4982]\tlr: 3.655e-05, memory: 14449, loss: 1.7625\n",
"2023-07-02 21:20:12,711 - modelscope - INFO - epoch [1][3185/4982]\tlr: 3.642e-05, memory: 14449, loss: 1.6734\n",
"2023-07-02 21:20:15,469 - modelscope - INFO - epoch [1][3190/4982]\tlr: 3.629e-05, memory: 14449, loss: 1.9477\n",
"2023-07-02 21:20:18,068 - modelscope - INFO - epoch [1][3195/4982]\tlr: 3.616e-05, memory: 14449, loss: 1.4062\n",
"2023-07-02 21:20:20,228 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:21:26,662 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
"2023-07-02 21:21:26,689 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3000_acc0.7654780745506287\n",
"2023-07-02 21:21:26,692 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
"2023-07-02 21:21:26,718 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3000\n",
"2023-07-02 21:21:26,721 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7670, evaluation/loss: 1.7173, loss: 2.3687\n",
"2023-07-02 21:21:29,912 - modelscope - INFO - epoch [1][3205/4982]\tlr: 3.590e-05, memory: 14449, loss: 1.7494\n",
"2023-07-02 21:21:32,447 - modelscope - INFO - epoch [1][3210/4982]\tlr: 3.577e-05, memory: 14449, loss: 2.1035\n",
"2023-07-02 21:21:35,773 - modelscope - INFO - epoch [1][3215/4982]\tlr: 3.565e-05, memory: 14449, loss: 0.8089\n",
"2023-07-02 21:21:38,867 - modelscope - INFO - epoch [1][3220/4982]\tlr: 3.552e-05, memory: 14449, loss: 1.5078\n",
"2023-07-02 21:21:42,117 - modelscope - INFO - epoch [1][3225/4982]\tlr: 3.539e-05, memory: 14449, loss: 0.6988\n",
"2023-07-02 21:21:44,231 - modelscope - INFO - epoch [1][3230/4982]\tlr: 3.526e-05, memory: 14449, loss: 2.9305\n",
"2023-07-02 21:21:46,826 - modelscope - INFO - epoch [1][3235/4982]\tlr: 3.513e-05, memory: 14449, loss: 1.9297\n",
"2023-07-02 21:21:49,591 - modelscope - INFO - epoch [1][3240/4982]\tlr: 3.501e-05, memory: 14449, loss: 0.5963\n",
"2023-07-02 21:21:51,805 - modelscope - INFO - epoch [1][3245/4982]\tlr: 3.488e-05, memory: 14449, loss: 3.5063\n",
"2023-07-02 21:21:54,641 - modelscope - INFO - epoch [1][3250/4982]\tlr: 3.475e-05, memory: 14449, loss: 2.2263\n",
"2023-07-02 21:21:56,972 - modelscope - INFO - epoch [1][3255/4982]\tlr: 3.462e-05, memory: 14449, loss: 2.3281\n",
"2023-07-02 21:21:59,236 - modelscope - INFO - epoch [1][3260/4982]\tlr: 3.450e-05, memory: 14449, loss: 1.6074\n",
"2023-07-02 21:22:02,735 - modelscope - INFO - epoch [1][3265/4982]\tlr: 3.437e-05, memory: 14449, loss: 0.7896\n",
"2023-07-02 21:22:05,850 - modelscope - INFO - epoch [1][3270/4982]\tlr: 3.424e-05, memory: 14449, loss: 2.6018\n",
"2023-07-02 21:22:07,890 - modelscope - INFO - epoch [1][3275/4982]\tlr: 3.412e-05, memory: 14449, loss: 1.3377\n",
"2023-07-02 21:22:10,846 - modelscope - INFO - epoch [1][3280/4982]\tlr: 3.399e-05, memory: 14449, loss: 1.4023\n",
"2023-07-02 21:22:13,203 - modelscope - INFO - epoch [1][3285/4982]\tlr: 3.387e-05, memory: 14449, loss: 2.1109\n",
"2023-07-02 21:22:15,914 - modelscope - INFO - epoch [1][3290/4982]\tlr: 3.374e-05, memory: 14449, loss: 1.3941\n",
"2023-07-02 21:22:18,753 - modelscope - INFO - epoch [1][3295/4982]\tlr: 3.362e-05, memory: 14449, loss: 2.0223\n",
"2023-07-02 21:22:21,131 - modelscope - INFO - epoch [1][3300/4982]\tlr: 3.349e-05, memory: 14449, loss: 1.3546\n",
"2023-07-02 21:22:22,563 - modelscope - INFO - epoch [1][3305/4982]\tlr: 3.337e-05, memory: 14449, loss: 2.2541\n",
"2023-07-02 21:22:26,351 - modelscope - INFO - epoch [1][3310/4982]\tlr: 3.324e-05, memory: 14449, loss: 2.1484\n",
"2023-07-02 21:22:29,794 - modelscope - INFO - epoch [1][3315/4982]\tlr: 3.312e-05, memory: 14449, loss: 0.9180\n",
"2023-07-02 21:22:31,954 - modelscope - INFO - epoch [1][3320/4982]\tlr: 3.299e-05, memory: 14449, loss: 2.4869\n",
"2023-07-02 21:22:34,848 - modelscope - INFO - epoch [1][3325/4982]\tlr: 3.287e-05, memory: 14449, loss: 1.0967\n",
"2023-07-02 21:22:37,229 - modelscope - INFO - epoch [1][3330/4982]\tlr: 3.275e-05, memory: 14449, loss: 2.1406\n",
"2023-07-02 21:22:39,882 - modelscope - INFO - epoch [1][3335/4982]\tlr: 3.262e-05, memory: 14449, loss: 1.9133\n",
"2023-07-02 21:22:42,375 - modelscope - INFO - epoch [1][3340/4982]\tlr: 3.250e-05, memory: 14449, loss: 2.0443\n",
"2023-07-02 21:22:45,140 - modelscope - INFO - epoch [1][3345/4982]\tlr: 3.238e-05, memory: 14449, loss: 2.7484\n",
"2023-07-02 21:22:48,235 - modelscope - INFO - epoch [1][3350/4982]\tlr: 3.225e-05, memory: 14449, loss: 1.3258\n",
"2023-07-02 21:22:50,145 - modelscope - INFO - epoch [1][3355/4982]\tlr: 3.213e-05, memory: 14449, loss: 2.4828\n",
"2023-07-02 21:22:53,373 - modelscope - INFO - epoch [1][3360/4982]\tlr: 3.201e-05, memory: 14449, loss: 1.3379\n",
"2023-07-02 21:22:55,667 - modelscope - INFO - epoch [1][3365/4982]\tlr: 3.189e-05, memory: 14449, loss: 2.0289\n",
"2023-07-02 21:22:57,577 - modelscope - INFO - epoch [1][3370/4982]\tlr: 3.176e-05, memory: 14449, loss: 2.0500\n",
"2023-07-02 21:23:00,744 - modelscope - INFO - epoch [1][3375/4982]\tlr: 3.164e-05, memory: 14449, loss: 1.0834\n",
"2023-07-02 21:23:04,128 - modelscope - INFO - epoch [1][3380/4982]\tlr: 3.152e-05, memory: 14449, loss: 0.8875\n",
"2023-07-02 21:23:07,233 - modelscope - INFO - epoch [1][3385/4982]\tlr: 3.140e-05, memory: 14449, loss: 1.1375\n",
"2023-07-02 21:23:09,464 - modelscope - INFO - epoch [1][3390/4982]\tlr: 3.128e-05, memory: 14449, loss: 2.3506\n",
"2023-07-02 21:23:12,230 - modelscope - INFO - epoch [1][3395/4982]\tlr: 3.116e-05, memory: 14449, loss: 1.0258\n",
"2023-07-02 21:23:15,891 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:24:22,313 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
"2023-07-02 21:24:22,343 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3200_acc0.7669530510902405\n",
"2023-07-02 21:24:22,345 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
"2023-07-02 21:24:22,373 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3200\n",
"2023-07-02 21:24:22,376 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7689, evaluation/loss: 1.6972, loss: 1.1217\n",
"2023-07-02 21:24:25,324 - modelscope - INFO - epoch [1][3405/4982]\tlr: 3.092e-05, memory: 14449, loss: 1.3055\n",
"2023-07-02 21:24:28,008 - modelscope - INFO - epoch [1][3410/4982]\tlr: 3.080e-05, memory: 14449, loss: 1.8813\n",
"2023-07-02 21:24:30,896 - modelscope - INFO - epoch [1][3415/4982]\tlr: 3.068e-05, memory: 14449, loss: 1.8965\n",
"2023-07-02 21:24:33,316 - modelscope - INFO - epoch [1][3420/4982]\tlr: 3.056e-05, memory: 14449, loss: 2.1344\n",
"2023-07-02 21:24:35,511 - modelscope - INFO - epoch [1][3425/4982]\tlr: 3.044e-05, memory: 14449, loss: 2.6798\n",
"2023-07-02 21:24:38,328 - modelscope - INFO - epoch [1][3430/4982]\tlr: 3.032e-05, memory: 14449, loss: 0.9617\n",
"2023-07-02 21:24:41,517 - modelscope - INFO - epoch [1][3435/4982]\tlr: 3.020e-05, memory: 14449, loss: 1.7773\n",
"2023-07-02 21:24:44,031 - modelscope - INFO - epoch [1][3440/4982]\tlr: 3.008e-05, memory: 14449, loss: 0.9613\n",
"2023-07-02 21:24:46,636 - modelscope - INFO - epoch [1][3445/4982]\tlr: 2.996e-05, memory: 14449, loss: 2.5844\n",
"2023-07-02 21:24:49,249 - modelscope - INFO - epoch [1][3450/4982]\tlr: 2.984e-05, memory: 14449, loss: 1.5498\n",
"2023-07-02 21:24:51,312 - modelscope - INFO - epoch [1][3455/4982]\tlr: 2.973e-05, memory: 14449, loss: 3.1250\n",
"2023-07-02 21:24:53,950 - modelscope - INFO - epoch [1][3460/4982]\tlr: 2.961e-05, memory: 14449, loss: 1.4406\n",
"2023-07-02 21:24:58,115 - modelscope - INFO - epoch [1][3465/4982]\tlr: 2.949e-05, memory: 14449, loss: 1.8449\n",
"2023-07-02 21:25:01,189 - modelscope - INFO - epoch [1][3470/4982]\tlr: 2.938e-05, memory: 14449, loss: 1.5242\n",
"2023-07-02 21:25:04,395 - modelscope - INFO - epoch [1][3475/4982]\tlr: 2.926e-05, memory: 14449, loss: 1.7469\n",
"2023-07-02 21:25:06,700 - modelscope - INFO - epoch [1][3480/4982]\tlr: 2.914e-05, memory: 14449, loss: 2.0787\n",
"2023-07-02 21:25:09,262 - modelscope - INFO - epoch [1][3485/4982]\tlr: 2.903e-05, memory: 14449, loss: 2.8416\n",
"2023-07-02 21:25:11,210 - modelscope - INFO - epoch [1][3490/4982]\tlr: 2.891e-05, memory: 14449, loss: 1.3633\n",
"2023-07-02 21:25:13,408 - modelscope - INFO - epoch [1][3495/4982]\tlr: 2.879e-05, memory: 14449, loss: 2.1203\n",
"2023-07-02 21:25:16,422 - modelscope - INFO - epoch [1][3500/4982]\tlr: 2.868e-05, memory: 14449, loss: 1.2863\n",
"2023-07-02 21:25:19,311 - modelscope - INFO - epoch [1][3505/4982]\tlr: 2.856e-05, memory: 14449, loss: 2.5109\n",
"2023-07-02 21:25:22,759 - modelscope - INFO - epoch [1][3510/4982]\tlr: 2.845e-05, memory: 14449, loss: 1.1850\n",
"2023-07-02 21:25:25,501 - modelscope - INFO - epoch [1][3515/4982]\tlr: 2.833e-05, memory: 14449, loss: 1.2992\n",
"2023-07-02 21:25:27,731 - modelscope - INFO - epoch [1][3520/4982]\tlr: 2.822e-05, memory: 14449, loss: 1.6945\n",
"2023-07-02 21:25:30,093 - modelscope - INFO - epoch [1][3525/4982]\tlr: 2.810e-05, memory: 14449, loss: 1.4635\n",
"2023-07-02 21:25:32,786 - modelscope - INFO - epoch [1][3530/4982]\tlr: 2.799e-05, memory: 14449, loss: 1.3238\n",
"2023-07-02 21:25:35,630 - modelscope - INFO - epoch [1][3535/4982]\tlr: 2.788e-05, memory: 14449, loss: 1.7512\n",
"2023-07-02 21:25:38,803 - modelscope - INFO - epoch [1][3540/4982]\tlr: 2.776e-05, memory: 14449, loss: 0.5063\n",
"2023-07-02 21:25:41,431 - modelscope - INFO - epoch [1][3545/4982]\tlr: 2.765e-05, memory: 14449, loss: 2.9984\n",
"2023-07-02 21:25:44,590 - modelscope - INFO - epoch [1][3550/4982]\tlr: 2.754e-05, memory: 14449, loss: 1.9760\n",
"2023-07-02 21:25:47,035 - modelscope - INFO - epoch [1][3555/4982]\tlr: 2.743e-05, memory: 14449, loss: 1.2375\n",
"2023-07-02 21:25:49,304 - modelscope - INFO - epoch [1][3560/4982]\tlr: 2.731e-05, memory: 14449, loss: 2.3781\n",
"2023-07-02 21:25:51,809 - modelscope - INFO - epoch [1][3565/4982]\tlr: 2.720e-05, memory: 14449, loss: 1.3707\n",
"2023-07-02 21:25:55,272 - modelscope - INFO - epoch [1][3570/4982]\tlr: 2.709e-05, memory: 14449, loss: 2.1244\n",
"2023-07-02 21:25:57,747 - modelscope - INFO - epoch [1][3575/4982]\tlr: 2.698e-05, memory: 14449, loss: 0.8705\n",
"2023-07-02 21:26:00,593 - modelscope - INFO - epoch [1][3580/4982]\tlr: 2.687e-05, memory: 14449, loss: 2.1484\n",
"2023-07-02 21:26:02,783 - modelscope - INFO - epoch [1][3585/4982]\tlr: 2.676e-05, memory: 14449, loss: 1.3639\n",
"2023-07-02 21:26:04,331 - modelscope - INFO - epoch [1][3590/4982]\tlr: 2.665e-05, memory: 14449, loss: 1.5500\n",
"2023-07-02 21:26:07,565 - modelscope - INFO - epoch [1][3595/4982]\tlr: 2.654e-05, memory: 14449, loss: 1.4891\n",
"2023-07-02 21:26:09,515 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 21:27:16,035 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
"2023-07-02 21:27:16,062 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3400_acc0.768944263458252\n",
"2023-07-02 21:27:16,065 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
"2023-07-02 21:27:16,090 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3400\n",
"2023-07-02 21:27:16,092 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7704, evaluation/loss: 1.6898, loss: 2.3109\n",
"2023-07-02 21:27:17,958 - modelscope - INFO - epoch [1][3605/4982]\tlr: 2.632e-05, memory: 14449, loss: 1.5484\n",
"2023-07-02 21:27:20,844 - modelscope - INFO - epoch [1][3610/4982]\tlr: 2.621e-05, memory: 14449, loss: 1.7049\n",
"2023-07-02 21:27:24,038 - modelscope - INFO - epoch [1][3615/4982]\tlr: 2.610e-05, memory: 14449, loss: 1.1580\n",
"2023-07-02 21:27:26,611 - modelscope - INFO - epoch [1][3620/4982]\tlr: 2.599e-05, memory: 14449, loss: 1.1926\n",
"2023-07-02 21:27:29,270 - modelscope - INFO - epoch [1][3625/4982]\tlr: 2.588e-05, memory: 14449, loss: 1.9445\n",
"2023-07-02 21:27:32,570 - modelscope - INFO - epoch [1][3630/4982]\tlr: 2.577e-05, memory: 14449, loss: 0.8320\n",
"2023-07-02 21:27:34,890 - modelscope - INFO - epoch [1][3635/4982]\tlr: 2.566e-05, memory: 14449, loss: 1.8961\n",
"2023-07-02 21:27:37,762 - modelscope - INFO - epoch [1][3640/4982]\tlr: 2.556e-05, memory: 14449, loss: 1.3434\n",
"2023-07-02 21:27:40,862 - modelscope - INFO - epoch [1][3645/4982]\tlr: 2.545e-05, memory: 14449, loss: 1.6516\n",
"2023-07-02 21:27:43,323 - modelscope - INFO - epoch [1][3650/4982]\tlr: 2.534e-05, memory: 14449, loss: 3.4539\n",
"2023-07-02 21:27:46,306 - modelscope - INFO - epoch [1][3655/4982]\tlr: 2.523e-05, memory: 14449, loss: 1.5139\n",
"2023-07-02 21:27:48,976 - modelscope - INFO - epoch [1][3660/4982]\tlr: 2.513e-05, memory: 14449, loss: 1.6055\n",
"2023-07-02 21:27:52,023 - modelscope - INFO - epoch [1][3665/4982]\tlr: 2.502e-05, memory: 14449, loss: 0.5375\n",
"2023-07-02 21:27:55,459 - modelscope - INFO - epoch [1][3670/4982]\tlr: 2.492e-05, memory: 14449, loss: 1.8552\n",
"2023-07-02 21:27:58,311 - modelscope - INFO - epoch [1][3675/4982]\tlr: 2.481e-05, memory: 14449, loss: 1.0477\n",
"2023-07-02 21:28:00,477 - modelscope - INFO - epoch [1][3680/4982]\tlr: 2.470e-05, memory: 14449, loss: 1.8646\n",
"2023-07-02 21:28:02,402 - modelscope - INFO - epoch [1][3685/4982]\tlr: 2.460e-05, memory: 14449, loss: 2.7117\n",
"2023-07-02 21:28:05,217 - modelscope - INFO - epoch [1][3690/4982]\tlr: 2.449e-05, memory: 14449, loss: 2.6594\n",
"2023-07-02 21:28:07,697 - modelscope - INFO - epoch [1][3695/4982]\tlr: 2.439e-05, memory: 14449, loss: 1.9680\n",
"2023-07-02 21:28:11,289 - modelscope - INFO - epoch [1][3700/4982]\tlr: 2.429e-05, memory: 14449, loss: 1.4680\n",
"2023-07-02 21:28:14,322 - modelscope - INFO - epoch [1][3705/4982]\tlr: 2.418e-05, memory: 14449, loss: 2.1742\n",
"2023-07-02 21:28:16,434 - modelscope - INFO - epoch [1][3710/4982]\tlr: 2.408e-05, memory: 14449, loss: 2.0691\n",
"2023-07-02 21:28:19,150 - modelscope - INFO - epoch [1][3715/4982]\tlr: 2.398e-05, memory: 14449, loss: 1.6078\n",
"2023-07-02 21:28:22,166 - modelscope - INFO - epoch [1][3720/4982]\tlr: 2.387e-05, memory: 14449, loss: 0.9880\n",
"2023-07-02 21:28:24,924 - modelscope - INFO - epoch [1][3725/4982]\tlr: 2.377e-05, memory: 14449, loss: 1.1384\n",
"2023-07-02 21:28:28,212 - modelscope - INFO - epoch [1][3730/4982]\tlr: 2.367e-05, memory: 14449, loss: 1.3064\n",
"2023-07-02 21:28:30,391 - modelscope - INFO - epoch [1][3735/4982]\tlr: 2.357e-05, memory: 14449, loss: 2.5031\n",
"2023-07-02 21:28:32,316 - modelscope - INFO - epoch [1][3740/4982]\tlr: 2.346e-05, memory: 14449, loss: 1.1914\n",
"2023-07-02 21:28:35,087 - modelscope - INFO - epoch [1][3745/4982]\tlr: 2.336e-05, memory: 14449, loss: 1.5630\n",
"2023-07-02 21:28:38,274 - modelscope - INFO - epoch [1][3750/4982]\tlr: 2.326e-05, memory: 14449, loss: 1.5844\n",
"2023-07-02 21:28:40,649 - modelscope - INFO - epoch [1][3755/4982]\tlr: 2.316e-05, memory: 14449, loss: 2.6648\n",
"2023-07-02 21:28:43,226 - modelscope - INFO - epoch [1][3760/4982]\tlr: 2.306e-05, memory: 14449, loss: 1.3648\n",
"2023-07-02 21:28:45,433 - modelscope - INFO - epoch [1][3765/4982]\tlr: 2.296e-05, memory: 14449, loss: 2.8930\n",
"2023-07-02 21:28:48,571 - modelscope - INFO - epoch [1][3770/4982]\tlr: 2.286e-05, memory: 14449, loss: 1.8161\n",
"2023-07-02 21:28:51,247 - modelscope - INFO - epoch [1][3775/4982]\tlr: 2.276e-05, memory: 14449, loss: 2.2783\n",
"2023-07-02 21:28:53,364 - modelscope - INFO - epoch [1][3780/4982]\tlr: 2.266e-05, memory: 14449, loss: 2.4652\n",
"2023-07-02 21:28:56,459 - modelscope - INFO - epoch [1][3785/4982]\tlr: 2.256e-05, memory: 14449, loss: 0.5556\n",
"2023-07-02 21:28:58,529 - modelscope - INFO - epoch [1][3790/4982]\tlr: 2.247e-05, memory: 14449, loss: 1.4350\n",
"2023-07-02 21:29:01,457 - modelscope - INFO - epoch [1][3795/4982]\tlr: 2.237e-05, memory: 14449, loss: 2.3062\n",
"2023-07-02 21:29:03,885 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 21:30:10,496 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
"2023-07-02 21:30:10,522 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3600_acc0.7704192399978638\n",
"2023-07-02 21:30:10,525 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
"2023-07-02 21:30:10,549 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3600\n",
"2023-07-02 21:30:10,552 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7714, evaluation/loss: 1.6864, loss: 1.6359\n",
"2023-07-02 21:30:12,897 - modelscope - INFO - epoch [1][3805/4982]\tlr: 2.217e-05, memory: 14449, loss: 2.1727\n",
"2023-07-02 21:30:15,703 - modelscope - INFO - epoch [1][3810/4982]\tlr: 2.208e-05, memory: 14449, loss: 1.7061\n",
"2023-07-02 21:30:18,582 - modelscope - INFO - epoch [1][3815/4982]\tlr: 2.198e-05, memory: 14449, loss: 0.9371\n",
"2023-07-02 21:30:21,148 - modelscope - INFO - epoch [1][3820/4982]\tlr: 2.188e-05, memory: 14449, loss: 1.7875\n",
"2023-07-02 21:30:23,806 - modelscope - INFO - epoch [1][3825/4982]\tlr: 2.179e-05, memory: 14449, loss: 2.2953\n",
"2023-07-02 21:30:26,426 - modelscope - INFO - epoch [1][3830/4982]\tlr: 2.169e-05, memory: 14449, loss: 2.3281\n",
"2023-07-02 21:30:28,893 - modelscope - INFO - epoch [1][3835/4982]\tlr: 2.160e-05, memory: 14449, loss: 1.5443\n",
"2023-07-02 21:30:31,735 - modelscope - INFO - epoch [1][3840/4982]\tlr: 2.150e-05, memory: 14449, loss: 2.0406\n",
"2023-07-02 21:30:33,879 - modelscope - INFO - epoch [1][3845/4982]\tlr: 2.141e-05, memory: 14449, loss: 2.1980\n",
"2023-07-02 21:30:36,598 - modelscope - INFO - epoch [1][3850/4982]\tlr: 2.131e-05, memory: 14449, loss: 1.5972\n",
"2023-07-02 21:30:39,142 - modelscope - INFO - epoch [1][3855/4982]\tlr: 2.122e-05, memory: 14449, loss: 2.2004\n",
"2023-07-02 21:30:41,541 - modelscope - INFO - epoch [1][3860/4982]\tlr: 2.112e-05, memory: 14449, loss: 1.5225\n",
"2023-07-02 21:30:44,206 - modelscope - INFO - epoch [1][3865/4982]\tlr: 2.103e-05, memory: 14449, loss: 2.0740\n",
"2023-07-02 21:30:47,318 - modelscope - INFO - epoch [1][3870/4982]\tlr: 2.094e-05, memory: 14449, loss: 2.7250\n",
"2023-07-02 21:30:50,059 - modelscope - INFO - epoch [1][3875/4982]\tlr: 2.084e-05, memory: 14449, loss: 2.2059\n",
"2023-07-02 21:30:52,045 - modelscope - INFO - epoch [1][3880/4982]\tlr: 2.075e-05, memory: 14449, loss: 1.7930\n",
"2023-07-02 21:30:54,716 - modelscope - INFO - epoch [1][3885/4982]\tlr: 2.066e-05, memory: 14449, loss: 1.6184\n",
"2023-07-02 21:30:56,979 - modelscope - INFO - epoch [1][3890/4982]\tlr: 2.057e-05, memory: 14449, loss: 2.1453\n",
"2023-07-02 21:31:01,437 - modelscope - INFO - epoch [1][3895/4982]\tlr: 2.048e-05, memory: 14449, loss: 1.2229\n",
"2023-07-02 21:31:05,207 - modelscope - INFO - epoch [1][3900/4982]\tlr: 2.039e-05, memory: 14449, loss: 1.7156\n",
"2023-07-02 21:31:07,873 - modelscope - INFO - epoch [1][3905/4982]\tlr: 2.029e-05, memory: 14449, loss: 1.8084\n",
"2023-07-02 21:31:10,896 - modelscope - INFO - epoch [1][3910/4982]\tlr: 2.020e-05, memory: 14449, loss: 0.4583\n",
"2023-07-02 21:31:13,623 - modelscope - INFO - epoch [1][3915/4982]\tlr: 2.011e-05, memory: 14449, loss: 3.1516\n",
"2023-07-02 21:31:16,647 - modelscope - INFO - epoch [1][3920/4982]\tlr: 2.002e-05, memory: 14449, loss: 1.0519\n",
"2023-07-02 21:31:19,431 - modelscope - INFO - epoch [1][3925/4982]\tlr: 1.994e-05, memory: 14449, loss: 2.3402\n",
"2023-07-02 21:31:21,995 - modelscope - INFO - epoch [1][3930/4982]\tlr: 1.985e-05, memory: 14449, loss: 2.3391\n",
"2023-07-02 21:31:24,439 - modelscope - INFO - epoch [1][3935/4982]\tlr: 1.976e-05, memory: 14449, loss: 2.4483\n",
"2023-07-02 21:31:26,586 - modelscope - INFO - epoch [1][3940/4982]\tlr: 1.967e-05, memory: 14449, loss: 2.2727\n",
"2023-07-02 21:31:28,897 - modelscope - INFO - epoch [1][3945/4982]\tlr: 1.958e-05, memory: 14449, loss: 3.0383\n",
"2023-07-02 21:31:31,754 - modelscope - INFO - epoch [1][3950/4982]\tlr: 1.949e-05, memory: 14449, loss: 1.5698\n",
"2023-07-02 21:31:35,256 - modelscope - INFO - epoch [1][3955/4982]\tlr: 1.941e-05, memory: 14449, loss: 1.2930\n",
"2023-07-02 21:31:37,474 - modelscope - INFO - epoch [1][3960/4982]\tlr: 1.932e-05, memory: 14449, loss: 1.4481\n",
"2023-07-02 21:31:40,154 - modelscope - INFO - epoch [1][3965/4982]\tlr: 1.923e-05, memory: 14449, loss: 1.6508\n",
"2023-07-02 21:31:42,215 - modelscope - INFO - epoch [1][3970/4982]\tlr: 1.915e-05, memory: 14449, loss: 1.6758\n",
"2023-07-02 21:31:44,996 - modelscope - INFO - epoch [1][3975/4982]\tlr: 1.906e-05, memory: 14449, loss: 3.0355\n",
"2023-07-02 21:31:47,982 - modelscope - INFO - epoch [1][3980/4982]\tlr: 1.898e-05, memory: 14449, loss: 2.0975\n",
"2023-07-02 21:31:50,425 - modelscope - INFO - epoch [1][3985/4982]\tlr: 1.889e-05, memory: 14449, loss: 2.7559\n",
"2023-07-02 21:31:53,599 - modelscope - INFO - epoch [1][3990/4982]\tlr: 1.881e-05, memory: 14449, loss: 0.6062\n",
"2023-07-02 21:31:56,806 - modelscope - INFO - epoch [1][3995/4982]\tlr: 1.872e-05, memory: 14449, loss: 1.8811\n",
"2023-07-02 21:31:59,002 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
"2023-07-02 21:33:05,226 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
"2023-07-02 21:33:05,253 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3800_acc0.7713964581489563\n",
"2023-07-02 21:33:05,255 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
"2023-07-02 21:33:05,280 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3800\n",
"2023-07-02 21:33:05,283 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7721, evaluation/loss: 1.6809, loss: 2.3164\n",
"2023-07-02 21:33:07,641 - modelscope - INFO - epoch [1][4005/4982]\tlr: 1.855e-05, memory: 14449, loss: 1.3918\n",
"2023-07-02 21:33:10,090 - modelscope - INFO - epoch [1][4010/4982]\tlr: 1.847e-05, memory: 14449, loss: 1.7758\n",
"2023-07-02 21:33:13,438 - modelscope - INFO - epoch [1][4015/4982]\tlr: 1.839e-05, memory: 14449, loss: 0.8627\n",
"2023-07-02 21:33:16,653 - modelscope - INFO - epoch [1][4020/4982]\tlr: 1.831e-05, memory: 14449, loss: 1.2715\n",
"2023-07-02 21:33:20,248 - modelscope - INFO - epoch [1][4025/4982]\tlr: 1.822e-05, memory: 14449, loss: 2.1164\n",
"2023-07-02 21:33:23,029 - modelscope - INFO - epoch [1][4030/4982]\tlr: 1.814e-05, memory: 14449, loss: 1.0982\n",
"2023-07-02 21:33:25,384 - modelscope - INFO - epoch [1][4035/4982]\tlr: 1.806e-05, memory: 14449, loss: 1.3770\n",
"2023-07-02 21:33:27,542 - modelscope - INFO - epoch [1][4040/4982]\tlr: 1.798e-05, memory: 14449, loss: 1.4436\n",
"2023-07-02 21:33:29,897 - modelscope - INFO - epoch [1][4045/4982]\tlr: 1.790e-05, memory: 14449, loss: 1.6316\n",
"2023-07-02 21:33:32,478 - modelscope - INFO - epoch [1][4050/4982]\tlr: 1.782e-05, memory: 14449, loss: 0.8738\n",
"2023-07-02 21:33:35,228 - modelscope - INFO - epoch [1][4055/4982]\tlr: 1.774e-05, memory: 14449, loss: 1.9016\n",
"2023-07-02 21:33:37,569 - modelscope - INFO - epoch [1][4060/4982]\tlr: 1.766e-05, memory: 14449, loss: 1.6512\n",
"2023-07-02 21:33:40,234 - modelscope - INFO - epoch [1][4065/4982]\tlr: 1.758e-05, memory: 14449, loss: 1.3039\n",
"2023-07-02 21:33:42,749 - modelscope - INFO - epoch [1][4070/4982]\tlr: 1.750e-05, memory: 14449, loss: 1.2514\n",
"2023-07-02 21:33:45,340 - modelscope - INFO - epoch [1][4075/4982]\tlr: 1.742e-05, memory: 14449, loss: 2.8492\n",
"2023-07-02 21:33:47,472 - modelscope - INFO - epoch [1][4080/4982]\tlr: 1.734e-05, memory: 14449, loss: 2.0809\n",
"2023-07-02 21:33:50,149 - modelscope - INFO - epoch [1][4085/4982]\tlr: 1.727e-05, memory: 14449, loss: 1.1375\n",
"2023-07-02 21:33:53,306 - modelscope - INFO - epoch [1][4090/4982]\tlr: 1.719e-05, memory: 14449, loss: 0.4272\n",
"2023-07-02 21:33:55,772 - modelscope - INFO - epoch [1][4095/4982]\tlr: 1.711e-05, memory: 14449, loss: 3.0484\n",
"2023-07-02 21:33:58,344 - modelscope - INFO - epoch [1][4100/4982]\tlr: 1.704e-05, memory: 14449, loss: 1.9910\n",
"2023-07-02 21:34:00,903 - modelscope - INFO - epoch [1][4105/4982]\tlr: 1.696e-05, memory: 14449, loss: 1.7889\n",
"2023-07-02 21:34:03,059 - modelscope - INFO - epoch [1][4110/4982]\tlr: 1.688e-05, memory: 14449, loss: 1.2016\n",
"2023-07-02 21:34:05,621 - modelscope - INFO - epoch [1][4115/4982]\tlr: 1.681e-05, memory: 14449, loss: 1.8453\n",
"2023-07-02 21:34:09,027 - modelscope - INFO - epoch [1][4120/4982]\tlr: 1.673e-05, memory: 14449, loss: 1.5453\n",
"2023-07-02 21:34:11,741 - modelscope - INFO - epoch [1][4125/4982]\tlr: 1.666e-05, memory: 14449, loss: 1.9316\n",
"2023-07-02 21:34:13,865 - modelscope - INFO - epoch [1][4130/4982]\tlr: 1.659e-05, memory: 14449, loss: 2.3094\n",
"2023-07-02 21:34:16,258 - modelscope - INFO - epoch [1][4135/4982]\tlr: 1.651e-05, memory: 14449, loss: 2.5703\n",
"2023-07-02 21:34:20,487 - modelscope - INFO - epoch [1][4140/4982]\tlr: 1.644e-05, memory: 14449, loss: 1.3984\n",
"2023-07-02 21:34:23,365 - modelscope - INFO - epoch [1][4145/4982]\tlr: 1.636e-05, memory: 14449, loss: 1.5207\n",
"2023-07-02 21:34:26,448 - modelscope - INFO - epoch [1][4150/4982]\tlr: 1.629e-05, memory: 14449, loss: 1.3838\n",
"2023-07-02 21:34:28,356 - modelscope - INFO - epoch [1][4155/4982]\tlr: 1.622e-05, memory: 14449, loss: 1.5562\n",
"2023-07-02 21:34:30,276 - modelscope - INFO - epoch [1][4160/4982]\tlr: 1.615e-05, memory: 14449, loss: 2.0258\n",
"2023-07-02 21:34:33,019 - modelscope - INFO - epoch [1][4165/4982]\tlr: 1.608e-05, memory: 14449, loss: 1.0586\n",
"2023-07-02 21:34:35,587 - modelscope - INFO - epoch [1][4170/4982]\tlr: 1.601e-05, memory: 14449, loss: 2.0258\n",
"2023-07-02 21:34:38,118 - modelscope - INFO - epoch [1][4175/4982]\tlr: 1.593e-05, memory: 14449, loss: 1.7780\n",
"2023-07-02 21:34:40,812 - modelscope - INFO - epoch [1][4180/4982]\tlr: 1.586e-05, memory: 14449, loss: 1.4871\n",
"2023-07-02 21:34:43,689 - modelscope - INFO - epoch [1][4185/4982]\tlr: 1.579e-05, memory: 14449, loss: 2.4375\n",
"2023-07-02 21:34:45,571 - modelscope - INFO - epoch [1][4190/4982]\tlr: 1.572e-05, memory: 14449, loss: 2.8734\n",
"2023-07-02 21:34:47,974 - modelscope - INFO - epoch [1][4195/4982]\tlr: 1.566e-05, memory: 14449, loss: 1.9576\n",
"2023-07-02 21:34:50,431 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
"2023-07-02 21:35:56,740 - modelscope - INFO - Saving checkpoint at 4200 iter\n",
"2023-07-02 21:35:56,767 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4000\n",
"2023-07-02 21:35:56,770 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7719, evaluation/loss: 1.6805, loss: 3.5922\n",
"2023-07-02 21:35:58,922 - modelscope - INFO - epoch [1][4205/4982]\tlr: 1.552e-05, memory: 14449, loss: 2.2658\n",
"2023-07-02 21:36:01,295 - modelscope - INFO - epoch [1][4210/4982]\tlr: 1.545e-05, memory: 14449, loss: 1.6580\n",
"2023-07-02 21:36:04,097 - modelscope - INFO - epoch [1][4215/4982]\tlr: 1.538e-05, memory: 14449, loss: 1.6982\n",
"2023-07-02 21:36:06,731 - modelscope - INFO - epoch [1][4220/4982]\tlr: 1.532e-05, memory: 14449, loss: 1.9359\n",
"2023-07-02 21:36:08,551 - modelscope - INFO - epoch [1][4225/4982]\tlr: 1.525e-05, memory: 14449, loss: 2.5812\n",
"2023-07-02 21:36:11,911 - modelscope - INFO - epoch [1][4230/4982]\tlr: 1.518e-05, memory: 14449, loss: 1.9195\n",
"2023-07-02 21:36:14,506 - modelscope - INFO - epoch [1][4235/4982]\tlr: 1.512e-05, memory: 14449, loss: 1.2545\n",
"2023-07-02 21:36:17,733 - modelscope - INFO - epoch [1][4240/4982]\tlr: 1.505e-05, memory: 14449, loss: 1.9451\n",
"2023-07-02 21:36:20,470 - modelscope - INFO - epoch [1][4245/4982]\tlr: 1.499e-05, memory: 14449, loss: 1.4648\n",
"2023-07-02 21:36:22,770 - modelscope - INFO - epoch [1][4250/4982]\tlr: 1.492e-05, memory: 14449, loss: 1.6961\n",
"2023-07-02 21:36:25,378 - modelscope - INFO - epoch [1][4255/4982]\tlr: 1.486e-05, memory: 14449, loss: 2.4164\n",
"2023-07-02 21:36:27,752 - modelscope - INFO - epoch [1][4260/4982]\tlr: 1.479e-05, memory: 14449, loss: 1.9963\n",
"2023-07-02 21:36:30,118 - modelscope - INFO - epoch [1][4265/4982]\tlr: 1.473e-05, memory: 14449, loss: 2.1148\n",
"2023-07-02 21:36:33,660 - modelscope - INFO - epoch [1][4270/4982]\tlr: 1.466e-05, memory: 14449, loss: 1.0082\n",
"2023-07-02 21:36:37,177 - modelscope - INFO - epoch [1][4275/4982]\tlr: 1.460e-05, memory: 14449, loss: 1.0070\n",
"2023-07-02 21:36:39,794 - modelscope - INFO - epoch [1][4280/4982]\tlr: 1.454e-05, memory: 14449, loss: 2.2496\n",
"2023-07-02 21:36:42,033 - modelscope - INFO - epoch [1][4285/4982]\tlr: 1.448e-05, memory: 14449, loss: 2.6797\n",
"2023-07-02 21:36:45,045 - modelscope - INFO - epoch [1][4290/4982]\tlr: 1.442e-05, memory: 14449, loss: 1.7584\n",
"2023-07-02 21:36:47,854 - modelscope - INFO - epoch [1][4295/4982]\tlr: 1.435e-05, memory: 14449, loss: 0.8922\n",
"2023-07-02 21:36:50,056 - modelscope - INFO - epoch [1][4300/4982]\tlr: 1.429e-05, memory: 14449, loss: 0.9248\n",
"2023-07-02 21:36:52,432 - modelscope - INFO - epoch [1][4305/4982]\tlr: 1.423e-05, memory: 14449, loss: 2.2406\n",
"2023-07-02 21:36:55,320 - modelscope - INFO - epoch [1][4310/4982]\tlr: 1.417e-05, memory: 14449, loss: 2.6234\n",
"2023-07-02 21:36:57,625 - modelscope - INFO - epoch [1][4315/4982]\tlr: 1.411e-05, memory: 14449, loss: 2.5016\n",
"2023-07-02 21:36:59,666 - modelscope - INFO - epoch [1][4320/4982]\tlr: 1.405e-05, memory: 14449, loss: 2.4305\n",
"2023-07-02 21:37:01,862 - modelscope - INFO - epoch [1][4325/4982]\tlr: 1.400e-05, memory: 14449, loss: 2.3391\n",
"2023-07-02 21:37:03,730 - modelscope - INFO - epoch [1][4330/4982]\tlr: 1.394e-05, memory: 14449, loss: 2.1297\n",
"2023-07-02 21:37:06,491 - modelscope - INFO - epoch [1][4335/4982]\tlr: 1.388e-05, memory: 14449, loss: 1.5926\n",
"2023-07-02 21:37:08,327 - modelscope - INFO - epoch [1][4340/4982]\tlr: 1.382e-05, memory: 14449, loss: 2.0867\n",
"2023-07-02 21:37:10,978 - modelscope - INFO - epoch [1][4345/4982]\tlr: 1.376e-05, memory: 14449, loss: 1.5793\n",
"2023-07-02 21:37:13,418 - modelscope - INFO - epoch [1][4350/4982]\tlr: 1.371e-05, memory: 14449, loss: 1.3965\n",
"2023-07-02 21:37:16,097 - modelscope - INFO - epoch [1][4355/4982]\tlr: 1.365e-05, memory: 14449, loss: 1.6531\n",
"2023-07-02 21:37:18,922 - modelscope - INFO - epoch [1][4360/4982]\tlr: 1.360e-05, memory: 14449, loss: 1.2753\n",
"2023-07-02 21:37:21,708 - modelscope - INFO - epoch [1][4365/4982]\tlr: 1.354e-05, memory: 14449, loss: 1.6145\n",
"2023-07-02 21:37:23,716 - modelscope - INFO - epoch [1][4370/4982]\tlr: 1.349e-05, memory: 14449, loss: 2.6463\n",
"2023-07-02 21:37:27,213 - modelscope - INFO - epoch [1][4375/4982]\tlr: 1.343e-05, memory: 14449, loss: 0.6934\n",
"2023-07-02 21:37:30,031 - modelscope - INFO - epoch [1][4380/4982]\tlr: 1.338e-05, memory: 14449, loss: 2.2023\n",
"2023-07-02 21:37:33,441 - modelscope - INFO - epoch [1][4385/4982]\tlr: 1.332e-05, memory: 14449, loss: 1.6848\n",
"2023-07-02 21:37:35,797 - modelscope - INFO - epoch [1][4390/4982]\tlr: 1.327e-05, memory: 14449, loss: 1.6936\n",
"2023-07-02 21:37:39,329 - modelscope - INFO - epoch [1][4395/4982]\tlr: 1.322e-05, memory: 14449, loss: 0.5190\n",
"2023-07-02 21:37:41,815 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:38:48,264 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
"2023-07-02 21:38:48,291 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4000_acc0.7720601558685303\n",
"2023-07-02 21:38:48,293 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
"2023-07-02 21:38:48,319 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4200\n",
"2023-07-02 21:38:48,321 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7722, evaluation/loss: 1.6760, loss: 2.0141\n",
"2023-07-02 21:38:52,426 - modelscope - INFO - epoch [1][4405/4982]\tlr: 1.311e-05, memory: 14449, loss: 1.0922\n",
"2023-07-02 21:38:54,940 - modelscope - INFO - epoch [1][4410/4982]\tlr: 1.306e-05, memory: 14449, loss: 1.1858\n",
"2023-07-02 21:38:57,631 - modelscope - INFO - epoch [1][4415/4982]\tlr: 1.301e-05, memory: 14449, loss: 2.2687\n",
"2023-07-02 21:39:01,287 - modelscope - INFO - epoch [1][4420/4982]\tlr: 1.296e-05, memory: 14449, loss: 1.2707\n",
"2023-07-02 21:39:04,825 - modelscope - INFO - epoch [1][4425/4982]\tlr: 1.291e-05, memory: 14449, loss: 2.9891\n",
"2023-07-02 21:39:07,641 - modelscope - INFO - epoch [1][4430/4982]\tlr: 1.286e-05, memory: 14449, loss: 1.6935\n",
"2023-07-02 21:39:10,432 - modelscope - INFO - epoch [1][4435/4982]\tlr: 1.281e-05, memory: 14449, loss: 1.4844\n",
"2023-07-02 21:39:13,413 - modelscope - INFO - epoch [1][4440/4982]\tlr: 1.276e-05, memory: 14449, loss: 1.8453\n",
"2023-07-02 21:39:17,035 - modelscope - INFO - epoch [1][4445/4982]\tlr: 1.271e-05, memory: 14449, loss: 1.4854\n",
"2023-07-02 21:39:20,194 - modelscope - INFO - epoch [1][4450/4982]\tlr: 1.266e-05, memory: 14449, loss: 1.2645\n",
"2023-07-02 21:39:23,060 - modelscope - INFO - epoch [1][4455/4982]\tlr: 1.261e-05, memory: 14449, loss: 1.7969\n",
"2023-07-02 21:39:25,473 - modelscope - INFO - epoch [1][4460/4982]\tlr: 1.257e-05, memory: 14449, loss: 2.3201\n",
"2023-07-02 21:39:28,124 - modelscope - INFO - epoch [1][4465/4982]\tlr: 1.252e-05, memory: 14449, loss: 1.7680\n",
"2023-07-02 21:39:30,849 - modelscope - INFO - epoch [1][4470/4982]\tlr: 1.247e-05, memory: 14449, loss: 1.6301\n",
"2023-07-02 21:39:33,762 - modelscope - INFO - epoch [1][4475/4982]\tlr: 1.243e-05, memory: 14449, loss: 2.1186\n",
"2023-07-02 21:39:36,085 - modelscope - INFO - epoch [1][4480/4982]\tlr: 1.238e-05, memory: 14449, loss: 1.4234\n",
"2023-07-02 21:39:38,762 - modelscope - INFO - epoch [1][4485/4982]\tlr: 1.233e-05, memory: 14449, loss: 1.7797\n",
"2023-07-02 21:39:41,748 - modelscope - INFO - epoch [1][4490/4982]\tlr: 1.229e-05, memory: 14449, loss: 1.6820\n",
"2023-07-02 21:39:44,541 - modelscope - INFO - epoch [1][4495/4982]\tlr: 1.224e-05, memory: 14449, loss: 1.0109\n",
"2023-07-02 21:39:47,053 - modelscope - INFO - epoch [1][4500/4982]\tlr: 1.220e-05, memory: 14449, loss: 2.4484\n",
"2023-07-02 21:39:49,590 - modelscope - INFO - epoch [1][4505/4982]\tlr: 1.216e-05, memory: 14449, loss: 1.8258\n",
"2023-07-02 21:39:52,526 - modelscope - INFO - epoch [1][4510/4982]\tlr: 1.211e-05, memory: 14449, loss: 2.8773\n",
"2023-07-02 21:39:55,867 - modelscope - INFO - epoch [1][4515/4982]\tlr: 1.207e-05, memory: 14449, loss: 1.6246\n",
"2023-07-02 21:39:58,627 - modelscope - INFO - epoch [1][4520/4982]\tlr: 1.203e-05, memory: 14449, loss: 2.5562\n",
"2023-07-02 21:40:01,603 - modelscope - INFO - epoch [1][4525/4982]\tlr: 1.199e-05, memory: 14449, loss: 1.4436\n",
"2023-07-02 21:40:04,193 - modelscope - INFO - epoch [1][4530/4982]\tlr: 1.194e-05, memory: 14449, loss: 1.3711\n",
"2023-07-02 21:40:07,773 - modelscope - INFO - epoch [1][4535/4982]\tlr: 1.190e-05, memory: 14449, loss: 1.8023\n",
"2023-07-02 21:40:10,054 - modelscope - INFO - epoch [1][4540/4982]\tlr: 1.186e-05, memory: 14449, loss: 2.0508\n",
"2023-07-02 21:40:12,973 - modelscope - INFO - epoch [1][4545/4982]\tlr: 1.182e-05, memory: 14449, loss: 2.5195\n",
"2023-07-02 21:40:16,038 - modelscope - INFO - epoch [1][4550/4982]\tlr: 1.178e-05, memory: 14449, loss: 1.7164\n",
"2023-07-02 21:40:18,581 - modelscope - INFO - epoch [1][4555/4982]\tlr: 1.174e-05, memory: 14449, loss: 1.5645\n",
"2023-07-02 21:40:20,963 - modelscope - INFO - epoch [1][4560/4982]\tlr: 1.170e-05, memory: 14449, loss: 2.0105\n",
"2023-07-02 21:40:23,706 - modelscope - INFO - epoch [1][4565/4982]\tlr: 1.167e-05, memory: 14449, loss: 1.3252\n",
"2023-07-02 21:40:25,962 - modelscope - INFO - epoch [1][4570/4982]\tlr: 1.163e-05, memory: 14449, loss: 1.8855\n",
"2023-07-02 21:40:29,182 - modelscope - INFO - epoch [1][4575/4982]\tlr: 1.159e-05, memory: 14449, loss: 1.2594\n",
"2023-07-02 21:40:31,408 - modelscope - INFO - epoch [1][4580/4982]\tlr: 1.155e-05, memory: 14449, loss: 2.0570\n",
"2023-07-02 21:40:34,024 - modelscope - INFO - epoch [1][4585/4982]\tlr: 1.152e-05, memory: 14449, loss: 2.6170\n",
"2023-07-02 21:40:36,599 - modelscope - INFO - epoch [1][4590/4982]\tlr: 1.148e-05, memory: 14449, loss: 1.6721\n",
"2023-07-02 21:40:39,014 - modelscope - INFO - epoch [1][4595/4982]\tlr: 1.144e-05, memory: 14449, loss: 1.1687\n",
"2023-07-02 21:40:41,965 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
"2023-07-02 21:41:48,497 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
"2023-07-02 21:41:48,524 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4400_acc0.7721523642539978\n",
"2023-07-02 21:41:48,526 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
"2023-07-02 21:41:48,552 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4400\n",
"2023-07-02 21:41:48,555 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7725, evaluation/loss: 1.6727, loss: 1.6291\n",
"2023-07-02 21:41:51,846 - modelscope - INFO - epoch [1][4605/4982]\tlr: 1.137e-05, memory: 14449, loss: 0.3742\n",
"2023-07-02 21:41:54,432 - modelscope - INFO - epoch [1][4610/4982]\tlr: 1.134e-05, memory: 14449, loss: 1.9832\n",
"2023-07-02 21:41:56,756 - modelscope - INFO - epoch [1][4615/4982]\tlr: 1.130e-05, memory: 14449, loss: 1.6234\n",
"2023-07-02 21:41:59,635 - modelscope - INFO - epoch [1][4620/4982]\tlr: 1.127e-05, memory: 14449, loss: 1.2416\n",
"2023-07-02 21:42:02,440 - modelscope - INFO - epoch [1][4625/4982]\tlr: 1.124e-05, memory: 14449, loss: 1.9668\n",
"2023-07-02 21:42:04,595 - modelscope - INFO - epoch [1][4630/4982]\tlr: 1.120e-05, memory: 14449, loss: 1.1527\n",
"2023-07-02 21:42:07,367 - modelscope - INFO - epoch [1][4635/4982]\tlr: 1.117e-05, memory: 14449, loss: 2.0367\n",
"2023-07-02 21:42:09,781 - modelscope - INFO - epoch [1][4640/4982]\tlr: 1.114e-05, memory: 14449, loss: 1.6268\n",
"2023-07-02 21:42:12,158 - modelscope - INFO - epoch [1][4645/4982]\tlr: 1.111e-05, memory: 14449, loss: 2.4633\n",
"2023-07-02 21:42:14,206 - modelscope - INFO - epoch [1][4650/4982]\tlr: 1.108e-05, memory: 14449, loss: 2.8531\n",
"2023-07-02 21:42:16,879 - modelscope - INFO - epoch [1][4655/4982]\tlr: 1.105e-05, memory: 14449, loss: 2.2703\n",
"2023-07-02 21:42:20,006 - modelscope - INFO - epoch [1][4660/4982]\tlr: 1.102e-05, memory: 14449, loss: 0.8350\n",
"2023-07-02 21:42:22,598 - modelscope - INFO - epoch [1][4665/4982]\tlr: 1.099e-05, memory: 14449, loss: 1.9375\n",
"2023-07-02 21:42:26,607 - modelscope - INFO - epoch [1][4670/4982]\tlr: 1.096e-05, memory: 14449, loss: 0.9594\n",
"2023-07-02 21:42:30,336 - modelscope - INFO - epoch [1][4675/4982]\tlr: 1.093e-05, memory: 14449, loss: 1.2943\n",
"2023-07-02 21:42:32,894 - modelscope - INFO - epoch [1][4680/4982]\tlr: 1.090e-05, memory: 14449, loss: 1.4293\n",
"2023-07-02 21:42:37,079 - modelscope - INFO - epoch [1][4685/4982]\tlr: 1.087e-05, memory: 14449, loss: 1.4109\n",
"2023-07-02 21:42:40,878 - modelscope - INFO - epoch [1][4690/4982]\tlr: 1.084e-05, memory: 14449, loss: 0.6270\n",
"2023-07-02 21:42:43,202 - modelscope - INFO - epoch [1][4695/4982]\tlr: 1.082e-05, memory: 14449, loss: 1.4430\n",
"2023-07-02 21:42:45,786 - modelscope - INFO - epoch [1][4700/4982]\tlr: 1.079e-05, memory: 14449, loss: 1.2656\n",
"2023-07-02 21:42:47,371 - modelscope - INFO - epoch [1][4705/4982]\tlr: 1.076e-05, memory: 14449, loss: 1.9141\n",
"2023-07-02 21:42:50,147 - modelscope - INFO - epoch [1][4710/4982]\tlr: 1.074e-05, memory: 14449, loss: 1.1176\n",
"2023-07-02 21:42:52,690 - modelscope - INFO - epoch [1][4715/4982]\tlr: 1.071e-05, memory: 14449, loss: 2.7781\n",
"2023-07-02 21:42:55,645 - modelscope - INFO - epoch [1][4720/4982]\tlr: 1.069e-05, memory: 14449, loss: 0.4620\n",
"2023-07-02 21:42:58,615 - modelscope - INFO - epoch [1][4725/4982]\tlr: 1.066e-05, memory: 14449, loss: 1.2354\n",
"2023-07-02 21:43:00,944 - modelscope - INFO - epoch [1][4730/4982]\tlr: 1.064e-05, memory: 14449, loss: 1.4683\n",
"2023-07-02 21:43:04,011 - modelscope - INFO - epoch [1][4735/4982]\tlr: 1.062e-05, memory: 14449, loss: 1.3249\n",
"2023-07-02 21:43:06,962 - modelscope - INFO - epoch [1][4740/4982]\tlr: 1.059e-05, memory: 14449, loss: 1.0039\n",
"2023-07-02 21:43:10,074 - modelscope - INFO - epoch [1][4745/4982]\tlr: 1.057e-05, memory: 14449, loss: 1.9678\n",
"2023-07-02 21:43:12,406 - modelscope - INFO - epoch [1][4750/4982]\tlr: 1.055e-05, memory: 14449, loss: 0.6996\n",
"2023-07-02 21:43:15,125 - modelscope - INFO - epoch [1][4755/4982]\tlr: 1.053e-05, memory: 14449, loss: 0.9693\n",
"2023-07-02 21:43:17,919 - modelscope - INFO - epoch [1][4760/4982]\tlr: 1.050e-05, memory: 14449, loss: 2.0680\n",
"2023-07-02 21:43:20,500 - modelscope - INFO - epoch [1][4765/4982]\tlr: 1.048e-05, memory: 14449, loss: 1.6277\n",
"2023-07-02 21:43:22,713 - modelscope - INFO - epoch [1][4770/4982]\tlr: 1.046e-05, memory: 14449, loss: 1.9484\n",
"2023-07-02 21:43:24,366 - modelscope - INFO - epoch [1][4775/4982]\tlr: 1.044e-05, memory: 14449, loss: 2.6502\n",
"2023-07-02 21:43:27,079 - modelscope - INFO - epoch [1][4780/4982]\tlr: 1.042e-05, memory: 14449, loss: 1.2715\n",
"2023-07-02 21:43:29,023 - modelscope - INFO - epoch [1][4785/4982]\tlr: 1.040e-05, memory: 14449, loss: 1.8383\n",
"2023-07-02 21:43:31,660 - modelscope - INFO - epoch [1][4790/4982]\tlr: 1.038e-05, memory: 14449, loss: 1.6623\n",
"2023-07-02 21:43:34,660 - modelscope - INFO - epoch [1][4795/4982]\tlr: 1.037e-05, memory: 14449, loss: 1.2914\n",
"2023-07-02 21:43:37,720 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
"2023-07-02 21:44:44,218 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
"2023-07-02 21:44:44,248 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4600_acc0.7724842429161072\n",
"2023-07-02 21:44:44,250 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
"2023-07-02 21:44:44,279 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4600\n",
"2023-07-02 21:44:44,282 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7729, evaluation/loss: 1.6707, loss: 1.1414\n",
"2023-07-02 21:44:46,870 - modelscope - INFO - epoch [1][4805/4982]\tlr: 1.033e-05, memory: 14449, loss: 0.6551\n",
"2023-07-02 21:44:49,076 - modelscope - INFO - epoch [1][4810/4982]\tlr: 1.031e-05, memory: 14449, loss: 1.6857\n",
"2023-07-02 21:44:51,074 - modelscope - INFO - epoch [1][4815/4982]\tlr: 1.030e-05, memory: 14449, loss: 1.9123\n",
"2023-07-02 21:44:53,385 - modelscope - INFO - epoch [1][4820/4982]\tlr: 1.028e-05, memory: 14449, loss: 1.4424\n",
"2023-07-02 21:44:55,581 - modelscope - INFO - epoch [1][4825/4982]\tlr: 1.027e-05, memory: 14449, loss: 2.2789\n",
"2023-07-02 21:44:58,108 - modelscope - INFO - epoch [1][4830/4982]\tlr: 1.025e-05, memory: 14449, loss: 1.9641\n",
"2023-07-02 21:45:00,888 - modelscope - INFO - epoch [1][4835/4982]\tlr: 1.024e-05, memory: 14449, loss: 1.6689\n",
"2023-07-02 21:45:02,999 - modelscope - INFO - epoch [1][4840/4982]\tlr: 1.022e-05, memory: 14449, loss: 1.9693\n",
"2023-07-02 21:45:06,302 - modelscope - INFO - epoch [1][4845/4982]\tlr: 1.021e-05, memory: 14449, loss: 1.3166\n",
"2023-07-02 21:45:09,602 - modelscope - INFO - epoch [1][4850/4982]\tlr: 1.019e-05, memory: 14449, loss: 1.5213\n",
"2023-07-02 21:45:12,571 - modelscope - INFO - epoch [1][4855/4982]\tlr: 1.018e-05, memory: 14449, loss: 1.8047\n",
"2023-07-02 21:45:14,672 - modelscope - INFO - epoch [1][4860/4982]\tlr: 1.017e-05, memory: 14449, loss: 1.5372\n",
"2023-07-02 21:45:17,717 - modelscope - INFO - epoch [1][4865/4982]\tlr: 1.016e-05, memory: 14449, loss: 1.3180\n",
"2023-07-02 21:45:20,504 - modelscope - INFO - epoch [1][4870/4982]\tlr: 1.014e-05, memory: 14449, loss: 1.3500\n",
"2023-07-02 21:45:23,506 - modelscope - INFO - epoch [1][4875/4982]\tlr: 1.013e-05, memory: 14449, loss: 2.2521\n",
"2023-07-02 21:45:25,399 - modelscope - INFO - epoch [1][4880/4982]\tlr: 1.012e-05, memory: 14449, loss: 1.9281\n",
"2023-07-02 21:45:28,444 - modelscope - INFO - epoch [1][4885/4982]\tlr: 1.011e-05, memory: 14449, loss: 1.4693\n",
"2023-07-02 21:45:31,381 - modelscope - INFO - epoch [1][4890/4982]\tlr: 1.010e-05, memory: 14449, loss: 2.0117\n",
"2023-07-02 21:45:35,557 - modelscope - INFO - epoch [1][4895/4982]\tlr: 1.009e-05, memory: 14449, loss: 0.5264\n",
"2023-07-02 21:45:39,804 - modelscope - INFO - epoch [1][4900/4982]\tlr: 1.008e-05, memory: 14449, loss: 1.2449\n",
"2023-07-02 21:45:42,752 - modelscope - INFO - epoch [1][4905/4982]\tlr: 1.008e-05, memory: 14449, loss: 1.3134\n",
"2023-07-02 21:45:45,007 - modelscope - INFO - epoch [1][4910/4982]\tlr: 1.007e-05, memory: 14449, loss: 0.9836\n",
"2023-07-02 21:45:47,247 - modelscope - INFO - epoch [1][4915/4982]\tlr: 1.006e-05, memory: 14449, loss: 1.8653\n",
"2023-07-02 21:45:49,545 - modelscope - INFO - epoch [1][4920/4982]\tlr: 1.005e-05, memory: 14449, loss: 1.9227\n",
"2023-07-02 21:45:52,533 - modelscope - INFO - epoch [1][4925/4982]\tlr: 1.005e-05, memory: 14449, loss: 1.1875\n",
"2023-07-02 21:45:55,303 - modelscope - INFO - epoch [1][4930/4982]\tlr: 1.004e-05, memory: 14449, loss: 1.9453\n",
"2023-07-02 21:45:58,165 - modelscope - INFO - epoch [1][4935/4982]\tlr: 1.003e-05, memory: 14449, loss: 0.6951\n",
"2023-07-02 21:46:01,430 - modelscope - INFO - epoch [1][4940/4982]\tlr: 1.003e-05, memory: 14449, loss: 0.7973\n",
"2023-07-02 21:46:04,313 - modelscope - INFO - epoch [1][4945/4982]\tlr: 1.002e-05, memory: 14449, loss: 1.8844\n",
"2023-07-02 21:46:06,392 - modelscope - INFO - epoch [1][4950/4982]\tlr: 1.002e-05, memory: 14449, loss: 1.5102\n",
"2023-07-02 21:46:08,801 - modelscope - INFO - epoch [1][4955/4982]\tlr: 1.002e-05, memory: 14449, loss: 2.2773\n",
"2023-07-02 21:46:11,500 - modelscope - INFO - epoch [1][4960/4982]\tlr: 1.001e-05, memory: 14449, loss: 1.6867\n",
"2023-07-02 21:46:13,716 - modelscope - INFO - epoch [1][4965/4982]\tlr: 1.001e-05, memory: 14449, loss: 2.5187\n",
"2023-07-02 21:46:16,514 - modelscope - INFO - epoch [1][4970/4982]\tlr: 1.001e-05, memory: 14449, loss: 1.1453\n",
"2023-07-02 21:46:19,686 - modelscope - INFO - epoch [1][4975/4982]\tlr: 1.000e-05, memory: 14449, loss: 1.6125\n",
"2023-07-02 21:46:23,065 - modelscope - INFO - epoch [1][4980/4982]\tlr: 1.000e-05, memory: 14449, loss: 2.1379\n",
"2023-07-02 21:46:24,007 - modelscope - INFO - Saving checkpoint at 4982 iter\n",
"2023-07-02 21:46:24,163 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4800\n",
"2023-07-02 21:46:24,209 - modelscope - INFO - Train finished. Uploading models, waiting...\n",
"2023-07-02 21:46:24,299 - modelscope - INFO - {'done': True}\n"
]
}
],
"source": [
"def cfg_modify_fn(cfg: Config) -> Config:\n",
" cfg.update(CONFIG)\n",
" return cfg\n",
"\n",
"\n",
"trainer = EpochBasedTrainer(\n",
" model=model,\n",
" cfg_file=cfg_file,\n",
" data_collator=data_collate_fn,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=val_dataset,\n",
" remove_unused_data=True,\n",
" seed=42,\n",
" cfg_modify_fn=cfg_modify_fn,\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 可视化\n",
"tensorboard 命令: (e.g.) \n",
"`tensorboard --logdir /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505 --port 6006`\n",
"\n",
"\n",
"The following code is copied from baichuan_sft.ipynb"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['lr', 'loss', 'evaluation/acc', 'evaluation/loss'])\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAHDCAYAAACXsvqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdkElEQVR4nO29d5wcV5X+/XRP6MlB0oykkUbJQc45CRtssLEwNjZg+2e8BkxeWHnBC7vLGlgwsCCz+y5LNtE2yXjBiw0YB5xzzlG2bMmSlUZhcp7pev84XVOhK9xKHaaf7+cjTXdX1b230q2nzj3n3JSmaRoIIYQQQggJSLrYDSCEEEIIIeUJhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhOS46qqrkEqlsHHjxmI3hRBCygIKSUIIIYQQEgoKSUIIIYQQEgoKSUIIIYQQEgoKSUII8eBHP/oRDjzwQGQyGXR1dWHNmjXo6+uzrPPKK6/g7LPPxoIFC1BXV4fFixfjfe97H/r7+2fWufXWW3HCCSegra0NTU1NWLlyJb7whS8UeG8IISReqovdAEIIKVUuvfRSfPWrX8Upp5yCT33qU1i3bh0uv/xyPProo7j//vtRU1ODiYkJrF69GuPj4/jHf/xHLFiwAFu2bMENN9yAvr4+tLa24vnnn8cZZ5yBQw45BF/72teQyWSwfv163H///cXeRUIIiQSFJCGEOLBz506sXbsWp556Km666Sak0zKAs99+++Giiy7Cb37zG3z4wx/GCy+8gA0bNuAPf/gDzjnnnJntv/zlL898vvXWWzExMYGbbroJ8+bNK/i+EEJIUnBomxBCHLjtttswMTGBiy++eEZEAsDHP/5xtLS04K9//SsAoLW1FQBwyy23YGRkxLGstrY2AMCf/vQnZLPZZBtOCCEFhEKSEEIceP311wEAK1eutPxeW1uLFStWzCxfvnw5PvvZz+LnP/855s2bh9WrV+OHP/yhxT/yvPPOw/HHH4+PfexjmD9/Pt73vvfh97//PUUlIaTsoZAkhJCI/Pd//zeeeeYZfOELX8Do6Cg+/elP48ADD8Qbb7wBAKivr8c999yD2267DR/4wAfwzDPP4LzzzsPb3/52TE9PF7n1hBASHgpJQghxYOnSpQCAdevWWX6fmJjAhg0bZpbrHHzwwfjSl76Ee+65B/feey+2bNmCH//4xzPL0+k0Tj75ZHz729/GCy+8gG984xu44447cOeddya/M4QQkhAUkoQQ4sApp5yC2tpafO9734OmaTO//+IXv0B/fz9OP/10AMDAwACmpqYs2x588MFIp9MYHx8HAOzZsyev/MMOOwwAZtYhhJByhFHbhBDiQEdHBy655BJ89atfxTve8Q6ceeaZWLduHX70ox/h6KOPxvvf/34AwB133IGLLroI5557Lvbdd19MTU3h17/+NaqqqnD22WcDAL72ta/hnnvuwemnn46lS5eip6cHP/rRj7B48WKccMIJxdxNQgiJBIUkIYS4cOmll6KjowM/+MEP8E//9E+YM2cOPvGJT+Cb3/wmampqAACHHnooVq9ejb/85S/YsmULGhoacOihh+Kmm27CcccdBwA488wzsXHjRlxxxRXYtWsX5s2bhxNPPBFf/epXZ6K+CSGkHElp5jEbQgghhBBCFKGPJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICUXB80hms1ls3boVzc3NSKVSha6eEEIIIYT4oGkaBgcH0dXVhXTa3e5YcCG5detWdHd3F7paQgghhBASkM2bN2Px4sWuywsuJJubmwFIw1paWgpdPSGEEEII8WFgYADd3d0zus2NggtJfTi7paWFQpIQQgghpITxc0NksA0hhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAlFICG5bNkypFKpvH9r1qxJqn2EEEIIIaRECZSQ/NFHH8X09PTM9+eeew5vf/vbce6558beMEIIIYQQUtoEEpIdHR2W75dddhn22msvnHjiibE2ihBCCCGElD6hfSQnJibwm9/8Bh/5yEd8p88hhBBCCCGzj9BzbV9//fXo6+vDhz70Ic/1xsfHMT4+PvN9YGAgbJWEEEIIIaSECG2R/MUvfoHTTjsNXV1dnuutXbsWra2tM/+6u7vDVkkIIYQQQkqIlKZpWtCNXn/9daxYsQJ//OMfcdZZZ3mu62SR7O7uRn9/P1paWoK3OE6y00A2C1TXFLcdhBBCCCElxMDAAFpbW331Wqih7SuvvBKdnZ04/fTTfdfNZDLIZDJhqkmeLa8B0ICFyykmCSGEEEICEnhoO5vN4sorr8SFF16I6urQLpYlQs4YOz5a3GYQQgghhJQhgYXkbbfdhk2bNuEjH/lIEu0hhBBCCCFlQmCT4qmnnooQbpWEEEIIIWSWwbm2CSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkASBV7AYQQgghhJQfFJIAZpTk8ADQv7u4TSGEEEIIKRPKfY7DeNmzXf7WNQCZ+uK2hRBCCCGkxKFF0onsdLFbQAghhBBS8lBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFSukNS0YreAEEIIIaSsqVwhSQghhBBCIkEhSQghhBBCQkEhSQghhBBCQkEhCQBIFbsBhBBCCCFlRwULSVOwDXUkIYQQQkhgKlhIEkIIIYSQKFSukPTK/sPMQIQQQgghvlSukCSEEEIIIZGgkCSEEEIIIaGgkHSEY9uEEEIIIX5UsJCkWCSEEEIIiUIFC0kvmA+IEEIIIcQPCklHaK0khBBCCPGjcoUktSIhhBBCSCQqV0ha4FA2IYQQQkhQKlhI0iRJCCGEEBKFChaSZigqCSGEEEKCQiFJCCGEEEJCUXlCMpsFNAcLpNNvhBBCCCHElcoSkpMTwJb1wJ7txW4JIYQQQkjZU1lCcrBX/o4M0gJJCCGEEBKRyhKShBBCCCEkNipMSNIKSQghhBASFxUmJAkhhBBCSFxQSAI0VBJCCCGEhCCwkNyyZQve//73Y+7cuaivr8fBBx+Mxx57LIm2JQzVIyGEEEJIFKqDrNzb24vjjz8eb33rW3HTTTeho6MDr7zyCtrb25NqX4GgqCSEEEIICUogIfmtb30L3d3duPLKK2d+W758eeyNKgh52pFikhBCCCEkCIGGtv/85z/jqKOOwrnnnovOzk4cfvjh+NnPfpZU2+KHWpEQQgghJDYCCcnXXnsNl19+OfbZZx/ccsst+NSnPoVPf/rT+OUvf+m6zfj4OAYGBiz/CCGEEEJI+RNoaDubzeKoo47CN7/5TQDA4Ycfjueeew4//vGPceGFFzpus3btWnz1q1+N3tKkobWSEEIIISQQgSySCxcuxAEHHGD5bf/998emTZtct7nkkkvQ398/82/z5s3hWho7VI6EEEIIIVEIZJE8/vjjsW7dOstvL7/8MpYuXeq6TSaTQSaTCdc6QgghhBBSsgSySP7TP/0THnroIXzzm9/E+vXrcfXVV+OnP/0p1qxZk1T7YkZz/EgIIYQQQoITSEgeffTRuO666/C73/0OBx10EL7+9a/jO9/5Di644IKk2lcYtGyxW0AIIYQQUnYEGtoGgDPOOANnnHFGEm0pHnt2ANhh/U3LAkgBqVQxWkQIIYQQUvJU8FzbHmPbWhbY8iqwbWPBWkMIIYQQUm5UsJD0YGIc0DRgerLYLSGEEEIIKVkoJFXQNGDXFqBvZ7FbQgghhBBSMlBIqjA+CowOA4O9xW4JIYQQQkjJULlCMkj6H425ggghhBBC7FSWkNRcvxBCCCGEkIBUlpBUxpy4nIKTEEIIIcSJChOSFIWEEEIIIXFRYUJSEepNQgghhBBfKCQ
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAHDCAYAAAAupnzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUElEQVR4nO3deZyO9f7H8dd9z5jFMotkxmgsyVLZikxTaDGZyql0OifJKUlEFKYFdSytHFIhEi2qc4p0TuVnK4fKSWNk7EtSEdEMYmYsY7b7+/vjMjd3DRkx133f1/v5eFyPe/vec39uV3i7+n4/X5cxxiAiIiIi4jBuuwsQEREREbGDgrCIiIiIOJKCsIiIiIg4koKwiIiIiDiSgrCIiIiIOJKCsIiIiIg4koKwiIiIiDiSgrCIiIiIOJKCsIiIiIg4koKwiIgDTZ8+HZfLxbZt2+wuRUTENgrCIiIiIuJICsIiIiIi4kgKwiIi8hvGGPLz8+0uQ0TkrFIQFhER6tWrx5/+9Cc++eQTWrduTWRkJK+++qrdZYmInFUKwiIiAsDmzZvp2rUr1113HePHj6dly5Z2lyQiclaF2l2AiIj4h++++44FCxaQmppqdykiIhVCV4RFRASA+vXrKwSLiKMoCIuICGAFYRERJ1EQFhERACIjI+0uQUSkQikIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjuYwxxu4iREREREQqmq4Ii4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiII4XaXUCg8Xg87Nq1i2rVquFyuewuR0RERER+xRjDgQMHSEhIwO0+8XVfBeFy2rVrF4mJiXaXISIiIiK/Y8eOHZx33nknfF1BuJyqVasGWL+wUVFRNlcjIiIiIr+Wl5dHYmKiN7ediIJwOZVOh4iKilIQFhEREfFjvzeNVYvlRERERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRTisIT5o0iXr16hEREUFSUhLLly8/6fhZs2bRpEkTIiIiaNasGfPmzfN53RjD8OHDqVWrFpGRkaSkpLBlyxafMfv27aNbt25ERUURExNDz549OXjwoPf1I0eOcM8999CsWTNCQ0Pp3LlzmbV8/vnnXHrppYSHh3PBBRcwffr00/klEBEREZEAV+4gPHPmTNLS0hgxYgQrV66kRYsWpKamsnv37jLHf/XVV3Tt2pWePXuyatUqOnfuTOfOnVm/fr13zJgxY5gwYQJTpkwhIyODKlWqkJqaypEjR7xjunXrxoYNG1i4cCFz5sxhyZIl9O7d2/t6SUkJkZGRPPTQQ6SkpJRZy9atW+nUqRPXXHMNq1evZuDAgdx333188skn5f1lEBEREZEA5zLGmPK8ISkpicsuu4yXX34ZAI/HQ2JiIg8++CBDhgz5zfguXbpw6NAh5syZ433u8ssvp2XLlkyZMgVjDAkJCTz88MM88sgjAOTm5hIXF8f06dO544472LRpExdddBFff/01rVu3BmDBggXceOON/PTTTyQkJPh85j333ENOTg4fffSRz/ODBw9m7ty5PiH8jjvuICcnhwULFpzS98/LyyM6Oprc3FyioqJO6T0iIiIiUnFONa+V64pwYWEhmZmZPldc3W43KSkppKenl/me9PT031yhTU1N9Y7funUrWVlZPmOio6NJSkryjklPTycmJsYbggFSUlJwu91kZGSccv2/V4sjZW+HrB+hqNDuSkREREQqVGh5Bu/du5eSkhLi4uJ8no+Li+Obb74p8z1ZWVlljs/KyvK+XvrcycbUrFnTt/DQUKpXr+4dcypOVEteXh75+flERkb+5j0FBQUUFBR4H+fl5Z3y5/m9bRth/EPWfZcLomtAjdpQo5Z1WzMRatWH6vHg1rpKERERCS7lCsJONGrUKJ588km7yzg7dv1w7L4xkLPHOr5b7TsuLALi60J8PSsYJ5wPiY0gsmpFVisiIiJyRpUrCNeoUYOQkBCys7N9ns/OziY+Pr7M98THx590fOltdnY2tWrV8hnTsmVL75hfL8YrLi5m3759J/zc8tQSFRVV5tVggKFDh5KWluZ9nJeXR2Ji4il/pl/LP2Tdtr4Obrkf9u46euyEPTutaRPZP0LhEdi+2TqOd25tSGwMdZpAncZQ+wIIC6/47yEiIiJyGsoVhMPCwmjVqhWLFi3ytifzeDwsWrSI/v37l/me5ORkFi1axMCBA73PLVy4kOTkZADq169PfHw8ixYt8gbfvLw8MjIy6Nu3r/dn5OTkkJmZSatWrQBYvHgxHo+HpKSkU64/OTn5N63bjq+lLOHh4YSHB2m4yz9g3VauBlVjrKPeRb5jSkrgl13w89Zjx87v4ZefrbC8ZyesXGyNdbshoQE0aG4d5zeFKtEV+Y1ERERETlm5p0akpaXRvXt3WrduTZs2bXjppZc4dOgQPXr0AODuu++mdu3ajBo1CoABAwZw1VVXMW7cODp16sSMGTNYsWIFU6dOBcDlcjFw4ECeeeYZGjZsSP369Rk2bBgJCQnesH3hhRdy/fXX06tXL6ZMmUJRURH9+/fnjjvu8OkYsXHjRgoLC9m3bx8HDhxg9erVAN6A3adPH15++WUee+wx7r33XhYvXsz777/P3LlzT/fXL7AdPtqHObLKiceEhFhzhWsmQov2x54/mAs7NsOOb+HHb6z7B/bDT1us44t/W+Nq1YMGLeD8ZtCwpRW2RURERPxAuYNwly5d2LNnD8OHDycrK4uWLVuyYMEC7yK07du34z5uYdUVV1zBu+++y9///ncef/xxGjZsyEcffUTTpk29Yx577DEOHTpE7969ycnJoW3btixYsICIiAjvmH/961/079+fDh064Ha7ue2225gwYYJPbTfeeCM//vij9/Ell1wCWBt2gHX1ee7cuQwaNIjx48dz3nnn8dprr5GamlreX4bgcKQ0CFcr/3urRsOFbawDjs4x3g1bN8B3a+GHtdbUip+3WceXH1sL8s5rCE1aQ5PLoO5FVtAWERERsUG5+wg7XVD1EZ4yGDZnQtfHoE3HM//zD+yHH9bB9+vg+zW+i/MAIipDo0utUHxRktW1QkREROQPOtW8pq4RTla6WK7yWer+UC3Wmk5ROqUi9xcreH/zNXybCYfyYO2X1gFQ90JodiU0aws1zzs7NYmIiIgcpSDsZKWL5U5nasTpiD7HuvLcpiN4SmDHFisUb8qw5hn/uMk65rwGcXWtUNy8rTWdwuWqmBpFRETEMRSEnaz0ivDJFsudLe4QqNvEOlLvgty9sP4rWLcUtqy22rZl/wj/fdfa3OPSa6wjrm7F1yoiIiJBSUHYqYyBw8e1T7NbdA248mbryD8IGzOsULxpudXX+NN/WkftBnDJtXDp1RAb97s/VkREROREFISdqvCINT0B/G+HuMiq0KqDdRTkW1eKV35mTaPY+b11zJlmtWRrkwotr4LwsjdEERERETkRBWGnyj/aOs0dYm2h7K/CI4+F4kO5sOZ/sOoz+H6t1ZHih3Xw4SRoeTUkXW9tCKL5xCIiInIKFISdqnRaRGTVwAmOVaLhij9ZR84eWLEQMj6xpk5kzLeOmnUgKRUu62h1rRARERE5AQVhpzrbrdPOtphzIeVO6NAVflhvheA1S2D3dvi/aTDvTWjeDtreDPWbBk7YFxERkQqjIOxUFd067WxxuaBBM+v4cz9Y/QUsm2e1Y1v1mXUknG8twmvVQXOJRURExEtB2KlK5wjb0TrtbImoApffaB07tsDS2bBysbWj3ayXrCvFbVKh7S1wbm27qxURERGbKQg71eGjQdgfWqedDYkN4Y6H4ebesPwTKxTv3QVL/gP/+xCaXgnX/BXqX2x3pSIiImITBWGnKp0aERGgc4RPVeVqcPVfoP2fYfMK+N9HVm/idV9aR72LrEDc9Aqrg4aIiIg4hoKwUwX6YrnycrvhwjbWkfUjfP4BrPgvbNsIbz4JNRLgqtusbhOaRyw
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMDklEQVR4nO3deXgUVb7G8bezdCcsSVizETZFkF1ZIggCEo2KsqgIDAoi48KgojiOcOcK4p0BlxmGURFGJ6DjxiYyKIhAABVFURAhAgFlFUjYEwiQQPe5fxQ0NAlCQpLqdL6f5+knVadPVX5ljfhOUecchzHGCAAAACjjguwuAAAAACgOBFsAAAAEBIItAAAAAgLBFgAAAAGBYAsAAICAQLAFAABAQCDYAgAAICAQbAEAABAQCLYAAAAICARbAAAABASCLQBcgm3btsnhcOitt96y5fe/9dZbcjgc2rZtmy2/HwDKAoItAPiRsWPHas6cOXaXobvuuku33Xab3WUAQKEQbAHAj1wo2N533306fvy46tSpU+I1nDx5UosWLVK3bt1K/HcBQHEKsbsAAMDFBQcHKzg4uFR+15dffqkjR44QbAGUOTyxBVAm7dq1Sw888ICio6PlcrnUpEkTTZkyRZKUmZmpkJAQjRkzJt9x6enpcjgceu211yRJBw8e1B//+Ec1a9ZMlSpVUkREhG699Vb9+OOPF62hc+fO6ty5c772+++/X3Xr1vVp+9vf/qb27durWrVqCg8PV6tWrTRr1iyfPg6HQzk5OXr77bflcDjkcDh0//33S7rwO7avv/66mjRpIpfLpbi4OA0dOlSHDx/OV2fTpk21fv16denSRRUqVFB8fLxeeumlAq9r3rx5aty4sfca1q5dq/vvv1/169dXWFiYYmJi9MADD+jAgQP5jt21a5cGDx6suLg4uVwu1atXT0OGDFFeXp63z+HDh/Xkk0+qbt26crlcqlWrlgYMGKD9+/cXWA8AXCqe2AIoczIzM3XdddfJ4XDo0UcfVY0aNfTpp59q8ODBys7O1hNPPKFOnTppxowZGj16tM+x06dPV3BwsHr37i1J2rJli+bMmaPevXurXr16yszM1L/+9S916tRJ69evV1xcXLHU/M9//lPdu3dX//79lZeXp2nTpql379765JNPvE9G33nnHf3+979X27Zt9dBDD0mSrrjiigue87nnntOYMWOUlJSkIUOGKD09XZMmTdJ3332nr776SqGhod6+hw4d0i233KI777xT99xzj2bNmqVnnnlGzZo106233upz3vnz5+v222/37i9atEhbtmzRoEGDFBMTo59++klvvPGGfvrpJ33zzTdyOBySpN27d6tt27Y6fPiwHnroITVq1Ei7du3SrFmzdOzYMTmdTh09elQdO3bUhg0b9MADD+jaa6/V/v37NXfuXP3666+qXr16sfzzBlBOGQAoYwYPHmxiY2PN/v37fdr79u1rIiMjzbFjx8y//vUvI8msW7fOp0/jxo3NjTfe6N0/ceKEcbvdPn22bt1qXC6Xef75533aJJmpU6d62zp16mQ6deqUr76BAweaOnXq+LQdO3bMZz8vL880bdrUpxZjjKlYsaIZOHBgvnNOnTrVSDJbt241xhizd+9e43Q6zc033+xT/2uvvWYkmSlTpvjUKcn85z//8bbl5uaamJgYc9ddd/n8ni1bthhJZunSpRes3RhjPvjgAyPJfPHFF962AQMGmKCgIPPdd9/l6+/xeIwxxowaNcpIMrNnz75gHwAoKl5FAFCmGGP04Ycf6o477pAxRvv37/d+kpOTlZWVpdWrV+vOO+9USEiIpk+f7j02LS1N69evV58+fbxtLpdLQUHWH4Vut1sHDhxQpUqV1LBhQ61evbrY6g4PD/duHzp0SFlZWerYsWORf8fixYuVl5enJ554wlu/JD344IOKiIjQvHnzfPpXqlRJ9957r3ff6XSqbdu22rJli0+/efPmKTIyUh06dCiw9hMnTmj//v267rrrJMlbv8fj0Zw5c3THHXeodevW+eo981T3ww8/VIsWLdSrV68L9gGAoiLYAihT9u3bp8OHD+uNN95QjRo1fD6DBg2SJO3du1fVq1dX165dNWPGDO+x06dPV0hIiO68805vm8fj0T/+8Q81aNBALpdL1atXV40aNbR27VplZWUVW92ffPKJrrvuOoWFhalq1aqqUaOGJk2aVOTfsX37dklSw4YNfdqdTqfq16/v/f6MWrVq5QuOVapU0aFDh3za5s2bp5tvvlkhIWffVDt48KCGDRum6OhohYeHq0aNGqpXr54keevft2+fsrOz1bRp09+s+5dffrloHwAoKt6xBVCmeDweSdK9996rgQMHFtinefPmkqS+fftq0KBBWrNmjVq2bKkZM2aoa9euPu9xjh07Vs8++6weeOAB/d///Z+qVq2qoKAgPfHEE97fdSEOh0PGmHztbrfbZ//LL79U9+7ddcMNN+j1119XbGysQkNDNXXqVL3//vuFuv6iutCMCufWf+zYMS1btkyTJk3y6XPPPffo66+/1tNPP62WLVuqUqVK8ng8uuWWWy76zwgAShPBFkCZUqNGDVWuXFlut1tJSUm/2bdnz556+OGHva8jbNq0SSNHjvTpM2vWLHXp0kUpKSk+7YcPH77oQKYqVark+6t8Sfmeln744YcKCwvTZ599JpfL5W2fOnVqvmMv9a/jz8xnm56ervr163vb8/LytHXr1ov+synIkiVLlJub6zOY7NChQ0pNTdWYMWM0atQob/vmzZt9jq1Ro4YiIiKUlpb2m7/jiiuuuGgfACgqXkUAUKYEBwfrrrvu0ocfflhgQNq3b593OyoqSsnJyZoxY4amTZsmp9Opnj175jvf+U9dZ86cqV27dl20liuuuEIbN270+Z0//vijvvrqq3y/w+Fw+DzJ3bZtW4ELMVSsWDHfdF0FSUpKktPp1CuvvOJTf0pKirKysoo0B+38+fPVunVrRUdH+9QuKd8/owkTJvjsBwUFqWfPnvr444/1/fff5zv3mePvuusu/fjjj/roo48u2AcAioontgDKnBdeeEFLly5VYmKiHnzwQTVu3FgHDx7U6tWrtXjxYh08eNDbt0+fPrr33nv1+uuvKzk5WVFRUT7nuv322/X8889r0KBBat++vdatW6f33nvP5ynohTzwwAMaP368kpOTNXjwYO3du1eTJ09WkyZNlJ2d7e3XrVs3jR8/Xrfccot+97vfae/evZo4caKuvPJKrV271uecrVq10uLFizV+/HjFxcWpXr16SkxMzPe7a9SooZEjR2rMmDG65ZZb1L17d6Wnp+v1119XmzZtfAaKXar58+d731M+IyIiQjfccINeeuklnTx5UvHx8Vq4cKG2bt2a7/ixY8dq4cKF6tSpkx566CFdffXV2rNnj2bOnKnly5crKipKTz/9tGbNmqXevXvrgQceUKtWrXTw4EHNnTtXkydPVosWLQpdNwB42TYfAwBchszMTDN06FCTkJBgQkNDTUxMjOnatat54403fPplZ2eb8PBwI8m8++67+c5z4sQJ89RTT5nY2FgTHh5urr/+erNixYp8U3kVNN2XMca8++67pn79+sbpdJqWLVuazz77rMDpvlJSUkyDBg2My+UyjRo1MlOnTjWjR4825/8xvHHjRnPDDTd4az4z9df5032d8dprr5lGjRqZ0NBQEx0dbYYMGWIOHTrk06dTp06mSZMm+a793DrT0tKMJLNy5cp8/X799VfTq1cvExUVZSIjI03v3r3N7t27jSQzevRon77bt283AwYMMDVq1DAul8vUr1/fDB061OTm5nr7HDhwwDz66KMmPj7eOJ1OU6tWLTNw4MB807cBQGE5jOHvfgCgvHvppZc0fvx47dmzh2m3AJRZvGMLAFDdunX1j3/8g1ALoEzjiS0AAAACAk9sAQAAEBAItgAAAAgIBFsAAAAEhICZx9bj8Wj37t2qXLkygx8AAAD8kDFGR44cUVxcnIKCiv/5asAE2927dyshIcHuMgAAAHARO3fuVK1atYr9vAETbCtXrizJ+gc
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNTUlEQVR4nO3deXxU5d3///dkmwRIhkDIRgKELQgIKCLEBVBSAlol1XorVQFFrRS+t/yq1tLbXdsgWlusFbUV0NtiXCrUG1lENjcWQZBVBNkhCQokIQGSkFy/P04yZEgC2c9k8no+Hqdz5pxrZj6HU+2bq9e5LocxxggAAABo4vzsLgAAAACoDwRbAAAA+ASCLQAAAHwCwRYAAAA+gWALAAAAn0CwBQAAgE8g2AIAAMAnEGwBAADgEwi2AAAA8AkEWwAAAPgEgi0AnMfevXvlcDg0e/ZsW35/9uzZcjgc2rt3b6P/9pNPPimHw9HovwsAtUWwBQAv8Kc//Unz5s2zuwzdfPPNuu666+wuAwBqhWALAF6gqmB755136tSpU+rYsWOD11BUVKQlS5bo+uuvb/DfAoCGEGB3AQCAqvn7+8vf379Rfuvzzz/XiRMnCLYAmix6bAE0KYcOHdLdd9+tqKgoOZ1O9erVSzNnzpQkZWVlKSAgQE899VSFz+3YsUMOh0Mvv/yyJOnYsWN66KGHdPHFF6tVq1YKCwvTyJEj9e23316whqFDh2ro0KEVjo8bN06dOnXyOPbCCy/oiiuuUNu2bRUSEqL+/fvrgw8+8GjjcDiUn5+vN998Uw6HQw6HQ+PGjZNU9RjbV155Rb169ZLT6VRsbKwmTpyo7OzsCnX27t1b27Zt0zXXXKMWLVqoffv2mjZtWqXX9fHHH6tnz54VrqG8M2fO6JlnnlGXLl3kdDrVqVMn/eEPf1BBQYFHu3Xr1iklJUUREREKCQlRQkKC7r77bo826enp6t+/v0JDQxUWFqaLL75Y06dPr/K3AeBC6LEF0GRkZWVp0KBBcjgcmjRpktq1a6eFCxdq/Pjxys3N1eTJkzVkyBC99957euKJJzw+++6778rf31+33HKLJGn37t2aN2+ebrnlFiUkJCgrK0uvvfaahgwZom3btik2NrZeap4+fbpuvPFG3X777SosLFR6erpuueUWzZ8/390z+r//+7+65557dPnll+u+++6TJHXp0qXK73zyySf11FNPKTk5WRMmTNCOHTs0Y8YMff311/ryyy8VGBjobnv8+HGNGDFCN910k/7rv/5LH3zwgR555BFdfPHFGjlypMf3LliwQD//+c/Pez333HOP3nzzTf3yl7/Ugw8+qDVr1igtLU3bt2/X3LlzJUlHjhzR8OHD1a5dO/3+979X69attXfvXn344Yfu71myZIlGjx6tYcOG6bnnnpMkbd++XV9++aUeeOCBGvwJA0A5BgCaiPHjx5uYmBjz008/eRy/7bbbjMvlMidPnjSvvfaakWQ2b97s0aZnz57m2muvdb8/ffq0KS4u9mizZ88e43Q6zdNPP+1xTJKZNWuW+9iQIUPMkCFDKtQ3duxY07FjR49jJ0+e9HhfWFhoevfu7VGLMca0bNnSjB07tsJ3zpo1y0gye/bsMcYYc+TIERMUFGSGDx/uUf/LL79sJJmZM2d61CnJvPXWW+5jBQUFJjo62tx8880ev7N7924jySxfvtx97IknnjDl/2di48aNRpK55557PD770EMPGUlm2bJlxhhj5s6daySZr7/+usL1lHnggQdMWFiYOXPmTJVtAKCmGIoAoEkwxujf//63brjhBhlj9NNPP7m3lJQU5eTk6JtvvtFNN92kgIAAvfvuu+7PbtmyRdu2bdOtt97qPuZ0OuXnZ/0rsLi4WEePHlWrVq2UmJiob775pt7qDgkJce8fP35cOTk5uvrqq2v9G59++qkKCws1efJkd/2SdO+99yosLEwff/yxR/tWrVrpjjvucL8PCgrS5Zdfrt27d3u0+/jjj+VyuXTVVVdV+dsLFiyQJP32t7/1OP7ggw+6v0OSWrduLUmaP3++ioqKKv2u1q1bKz8/X0uWLDnf5QJAjRBsATQJP/74o7Kzs/X666+rXbt2Httdd90lyfq/wCMiIjRs2DC999577s++++67CggI0E033eQ+VlJSor/85S/q1q2bnE6nIiIi1K5dO23atEk5OTn1Vvf8+fM1aNAgBQcHq02bNmrXrp1mzJhR69/Yt2+fJCkxMdHjeFBQkDp37uw+XyYuLq7CXLTh4eE6fvy4x7GPP/5Yw4cPV0BA1SPU9u3bJz8/P3Xt2tXjeHR0tFq3bu3+7SFDhujmm2/WU089pYiICI0aNUqzZs3yGIf7m9/8Rt27d9fIkSMVFxenu+++W4sWLarmnwIAVI5gC6BJKCkpkSTdcccdWrJkSaXblVdeKUm67bbb9P3332vjxo2SpPfee0/Dhg1TRESE+/v+9Kc/6be//a0GDx6st99+W4sXL9aSJUvUq1cv929VpapFC4qLiz3ef/7557rxxhsVHBysV155RQsWLNCSJUv0q1/9SsaY2v5R1EhVMyqU//2TJ09qxYoV1Z6/9kKLNjgcDn3wwQdatWqVJk2a5H7gr3///srLy5MkRUZGauPGjfroo4904403avny5Ro5cqTGjh1bzSsDgIp4eAxAk9CuXTuFhoaquLhYycnJ522bmpqqX//61+7hCN9//72mTJni0eaDDz7QNddcozfeeMPjeHZ2tkcArkx4eHiF/ytfUoXe0n//+98KDg7W4sWL5XQ63cdnzZpV4bPVXeGrbD7bHTt2qHPnzu7jhYWF2rNnzwX/bCqzbNkyFRQUVHiYrLLfLikp0c6dO3XRRRe5j2dlZSk7O7vCXLuDBg3SoEGD9Mc//lFz5szR7bffrvT0dN1zzz2SrF7mG264QTfccINKSkr0m9/8Rq+99poee+yxCr3CAFAd9NgCaBL8/f11880369///re2bNlS4fyPP/7o3m/durVSUlL03nvvKT09XUFBQUpNTa3wfef2mr7//vs6dOjQBWvp0qWLvvvuO4/f/Pbbb/Xll19W+A2Hw+HRk7t3795KF2Jo2bJlhem6KpOcnKygoCC99NJLHvW/8cYbysnJqdUctAsWLNBll12mqKio87Yr69H961//6nH8xRdflCT3bx8/frzCn22/fv0kyT0c4ejRox7n/fz81KdPH482AFBT9NgCaDKmTp2q5cuXa+DAgbr33nvVs2dPHTt2TN98840+/fRTHTt2zN321ltv1R133KFXXnlFKSkp7geayvz85z/X008/rbvuuktXXHGFNm/erH/9618evaBVufvuu/Xiiy8qJSVF48eP15EjR/Tqq6+qV69eys3Ndbe7/vrr9eKLL2rEiBH61a9+pSNHjujvf/+7unbtqk2bNnl8Z//+/fXpp5/qxRdfVGxsrBISEjRw4MAKv92uXTtNmTJFTz31lEaMGKEbb7xRO3bs0CuvvKIBAwZ4PChWXQsWLHCPUz6fvn37auzYsXr99deVnZ2tIUOGaO3atXrzzTeVmpqqa665RpL05ptv6pVXXtEvfvELdenSRSdOnNA//vEPhYWFucPxPffco2PHjunaa69VXFyc9u3bp7/97W/q16+fR28wANSIjTMyAECNZWVlmYkTJ5r4+HgTGBhooqOjzbBhw8zrr7/u0S43N9eEhIQYSebtt9+u8D2nT582Dz74oImJiTEhISHmyiuvNKtWraowlVdl030ZY8zbb79tOnfubIKCgky/fv3M4sWLK53u64033jDdunUzTqfT9OjRw8yaNavCNFrGGPPdd9+ZwYMHu2sum/rr3Om+yrz88sumR48eJjAw0ERFRZkJEyaY48ePe7QZMmSI6dWrV4VrL1/nli1bjCSzdu3aCu0qq7OoqMg89dRTJiEhwQQGBpr4+HgzZcoUc/r0aXebb775xowePdp06NDBOJ1OExkZaX7+85+bdevWudt88MEHZvjw4SYyMtIEBQWZDh06mF//+tcmIyOjQh0AUF0OYxrpCQYAgNeZNm2aXnzxRWVkZFR
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
2023-07-11 17:35:11 +08:00
"tb_dir = os.path.join(WORK_DIR, 'tensorboard_output')\n",
2023-07-03 16:19:00 +08:00
"fname = os.listdir(tb_dir)[0]\n",
"tb_path = os.path.join(tb_dir, fname)\n",
"#\n",
"data = read_tensorboard_file(tb_path)\n",
"print(data.keys())\n",
2023-07-11 17:35:11 +08:00
"_ = plot_image(data, 'loss', 0.9)\n",
"_ = plot_image(data, 'lr', 0)\n",
"_ = plot_image(data, 'evaluation/acc', 0)\n",
"_ = plot_image(data, 'evaluation/loss', 0)"
2023-07-03 16:19:00 +08:00
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 推理\n",
"推理部分见chatglm2_infer.ipynb"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "hackathon",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}