Files
modelscope/examples/pytorch/llm/llm_infer.py

145 lines
5.0 KiB
Python
Raw Normal View History

# ### Setting up experimental environment.
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
import warnings
from dataclasses import dataclass, field
from functools import partial
from typing import List, Optional
2023-07-26 18:12:55 +08:00
import torch
2023-08-29 17:27:18 +08:00
from swift import LoRAConfig, Swift
from transformers import GenerationConfig, TextStreamer
from utils import (DATASET_MAPPING, DEFAULT_PROMPT, MODEL_MAPPING, get_dataset,
get_model_tokenizer, inference, parse_args, process_dataset,
tokenize_function)
from modelscope import get_logger
2023-07-26 18:12:55 +08:00
warnings.warn(
'This directory has been migrated to '
'https://github.com/modelscope/swift/tree/main/examples/pytorch/llm, '
'and the files in this directory are no longer maintained.',
DeprecationWarning)
logger = get_logger()
@dataclass
class InferArguments:
model_type: str = field(
default='qwen-7b', metadata={'choices': list(MODEL_MAPPING.keys())})
sft_type: str = field(
default='lora', metadata={'choices': ['lora', 'full']})
ckpt_path: str = '/path/to/your/iter_xxx.pth'
eval_human: bool = False # False: eval test_dataset
2023-07-29 00:06:27 +08:00
ignore_args_error: bool = False # True: notebook compatibility
2023-07-26 18:12:55 +08:00
dataset: str = field(
default='alpaca-en,alpaca-zh',
metadata={'help': f'dataset choices: {list(DATASET_MAPPING.keys())}'})
2023-07-26 18:12:55 +08:00
dataset_seed: int = 42
dataset_sample: int = 20000 # -1: all dataset
2023-07-26 18:12:55 +08:00
dataset_test_size: float = 0.01
prompt: str = DEFAULT_PROMPT
max_length: Optional[int] = 2048
lora_target_modules: Optional[List[str]] = None
lora_rank: int = 8
lora_alpha: int = 32
lora_dropout_p: float = 0.1
max_new_tokens: int = 512
temperature: float = 0.9
top_k: int = 50
top_p: float = 0.9
def __post_init__(self):
if self.lora_target_modules is None:
self.lora_target_modules = MODEL_MAPPING[
self.model_type]['lora_TM']
if not os.path.isfile(self.ckpt_path):
raise ValueError(
f'Please enter a valid ckpt_path: {self.ckpt_path}')
def llm_infer(args: InferArguments) -> None:
# ### Loading Model and Tokenizer
support_bf16 = torch.cuda.is_bf16_supported()
if not support_bf16:
logger.warning(f'support_bf16: {support_bf16}')
kwargs = {'low_cpu_mem_usage': True, 'device_map': 'auto'}
model, tokenizer, _ = get_model_tokenizer(
args.model_type, torch_dtype=torch.bfloat16, **kwargs)
# ### Preparing lora
if args.sft_type == 'lora':
lora_config = LoRAConfig(
2023-08-29 17:27:18 +08:00
target_modules=args.lora_target_modules,
r=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout_p,
pretrained_weights=args.ckpt_path)
logger.info(f'lora_config: {lora_config}')
2023-07-26 18:12:55 +08:00
model = Swift.prepare_model(model, lora_config)
2023-08-29 17:27:18 +08:00
state_dict = torch.load(args.ckpt_path, map_location='cpu')
model.load_state_dict(state_dict)
elif args.sft_type == 'full':
state_dict = torch.load(args.ckpt_path, map_location='cpu')
model.load_state_dict(state_dict)
else:
raise ValueError(f'args.sft_type: {args.sft_type}')
# ### Inference
2023-07-26 18:12:55 +08:00
tokenize_func = partial(
tokenize_function,
tokenizer=tokenizer,
prompt=args.prompt,
max_length=args.max_length)
streamer = TextStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id)
logger.info(f'generation_config: {generation_config}')
if args.eval_human:
while True:
instruction = input('<<< ')
2023-07-26 18:12:55 +08:00
data = {'instruction': instruction}
input_ids = tokenize_func(data)['input_ids']
inference(input_ids, model, tokenizer, streamer, generation_config)
print('-' * 80)
else:
2023-07-29 00:06:27 +08:00
dataset = get_dataset(args.dataset.split(','))
2023-07-26 18:12:55 +08:00
_, test_dataset = process_dataset(dataset, args.dataset_test_size,
args.dataset_sample,
args.dataset_seed)
mini_test_dataset = test_dataset.select(range(10))
2023-07-26 18:12:55 +08:00
del dataset
for data in mini_test_dataset:
output = data['output']
data['output'] = None
2023-07-26 18:12:55 +08:00
input_ids = tokenize_func(data)['input_ids']
inference(input_ids, model, tokenizer, streamer, generation_config)
print()
print(f'[LABELS]{output}')
print('-' * 80)
# input('next[ENTER]')
if __name__ == '__main__':
args, remaining_argv = parse_args(InferArguments)
2023-07-26 18:12:55 +08:00
if len(remaining_argv) > 0:
if args.ignore_args_error:
logger.warning(f'remaining_argv: {remaining_argv}')
else:
raise ValueError(f'remaining_argv: {remaining_argv}')
llm_infer(args)