2023-07-04 18:39:36 +08:00
|
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
2023-08-29 17:27:18 +08:00
|
|
|
|
from swift import LoRAConfig, Swift
|
2023-07-04 18:39:36 +08:00
|
|
|
|
|
|
|
|
|
|
from modelscope.pipelines import pipeline
|
|
|
|
|
|
from modelscope.utils.constant import Tasks
|
|
|
|
|
|
|
|
|
|
|
|
# 使用源模型 model_id 初始化 pipeline
|
|
|
|
|
|
model_id = 'baichuan-inc/baichuan-7B'
|
|
|
|
|
|
pipe = pipeline(
|
|
|
|
|
|
task=Tasks.text_generation, model=model_id, model_revision='v1.0.2')
|
|
|
|
|
|
# lora 配置,replace_modules,rank,alpha 需与训练参数相同
|
2023-08-29 17:27:18 +08:00
|
|
|
|
lora_config = LoRAConfig(target_modules=['pack'], r=32, lora_alpha=32)
|
2023-07-04 18:39:36 +08:00
|
|
|
|
# 转 bf16,需与训练精度相同
|
|
|
|
|
|
model = pipe.model.bfloat16()
|
|
|
|
|
|
# model 转 lora
|
2023-08-29 17:27:18 +08:00
|
|
|
|
model = Swift.prepare_model(model, lora_config)
|
2023-07-04 18:39:36 +08:00
|
|
|
|
# 加载 lora 参数,默认 link 到于 output/model 路径
|
|
|
|
|
|
work_dir = './tmp'
|
|
|
|
|
|
state_dict = torch.load(osp.join(work_dir, 'output/pytorch_model.bin'))
|
|
|
|
|
|
model.load_state_dict(state_dict)
|
|
|
|
|
|
# 使用 lora model 替换 pipeline 中的 model
|
|
|
|
|
|
pipe.model = model
|
|
|
|
|
|
# 使用 pipeline 推理
|
|
|
|
|
|
result_zh = pipe('今天天气是真的')
|
|
|
|
|
|
print(result_zh)
|