Files
modelscope/examples/pytorch/baichuan/finetune_baichuan.py

226 lines
6.6 KiB
Python
Raw Normal View History

import os
import sys
import types
from dataclasses import dataclass, field
2023-08-29 17:27:18 +08:00
from swift import LoRAConfig, Swift
from transformers import AutoModelForCausalLM, AutoTokenizer
from modelscope import (EpochBasedTrainer, MsDataset, TorchModel, TrainingArgs,
build_dataset_from_file, snapshot_download)
from modelscope.metainfo import Trainers
from modelscope.preprocessors import TextGenerationTransformersPreprocessor
from modelscope.trainers import build_trainer
DEFAULT_PAD_TOKEN = '[PAD]'
DEFAULT_EOS_TOKEN = '</s>'
DEFAULT_BOS_TOKEN = '<s>'
DEFAULT_UNK_TOKEN = '<unk>'
@dataclass(init=False)
class TextGenerationArguments(TrainingArgs):
trainer: str = field(
default=Trainers.default, metadata={
'help': 'The trainer used',
})
src_txt: str = field(
default=None,
metadata={
'help': 'The source text key of preprocessor',
'cfg_node': 'preprocessor.src_txt'
})
tgt_txt: str = field(
default=None,
metadata={
'help': 'The target text key of preprocessor',
'cfg_node': 'preprocessor.tgt_txt'
})
sequence_length: int = field(
default=None,
metadata={
'help': 'The sequence length of preprocessor',
'cfg_node': 'preprocessor.sequence_length'
})
lr_scheduler: str = field(
default=None,
metadata={
'help': 'The lr scheduler type',
'cfg_node': 'train.lr_scheduler.type'
})
bf16: bool = field(
default=False,
metadata={
'help': 'Whether to use bf16',
'cfg_node': 'train.bf16'
})
deepspeed: str = field(
default=None,
metadata={
'help': 'The location of DeepSpeed json config file.',
})
T_max: int = field(
default=None,
metadata={
'help': 'The T_max for CosineAnnealingLR',
'cfg_node': 'train.lr_scheduler.T_max'
})
use_lora: int = field(
default=0,
metadata={'help': 'Whether to use lora to train the model.'},
)
lora_rank: int = field(
default=32,
metadata={'help': 'The lora rank'},
)
lora_alpha: int = field(
default=32,
metadata={'help': 'The lora alpha'},
)
lora_dropout: float = field(
default=0.05,
metadata={'help': 'The lora dropout'},
)
device_map: str = field(
default=None,
metadata={
'help': 'A map that specifies where each submodule should go.'
})
def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer,
model):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
config, args = TextGenerationArguments().parse_cli().to_config()
print(config, args)
pipeline_type = None
def cfg_modify_fn(cfg):
global pipeline_type
pipeline_type = cfg.pipeline.type
if args.use_model_config:
cfg.merge_from_dict(config)
else:
cfg = config
if 'hooks' not in cfg.train:
cfg.train['hooks'] = []
if args.deepspeed:
cfg.train.hooks.append({
'type': 'DeepspeedHook',
'config': args.deepspeed,
'save_zero_checkpoint': True,
'with_mpu': False,
})
return cfg
def custom_save_pretrained(self, *args, **kwargs):
config = kwargs.pop('config')
if config is not None:
config.pipeline = {'type': pipeline_type}
TorchModel.save_pretrained(self, *args, config=config, **kwargs)
if args.dataset_json_file is None:
train_dataset = MsDataset.load(
args.train_dataset_name,
subset_name=args.train_subset_name,
split=args.train_split,
namespace=args.train_dataset_namespace)
validation_dataset = MsDataset.load(
args.val_dataset_name,
subset_name=args.val_subset_name,
split=args.val_split,
namespace=args.val_dataset_namespace)
else:
train_dataset, validation_dataset = build_dataset_from_file(
args.dataset_json_file)
model_dir = snapshot_download(args.model)
sys.path.append(model_dir)
model = AutoModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=True, device_map=args.device_map)
model.model_dir = model_dir
model.save_pretrained = types.MethodType(custom_save_pretrained, model)
cfg_file = os.path.join(model_dir, 'configuration.json')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
special_tokens_dict = dict()
if tokenizer.pad_token is None or tokenizer.pad_token == '':
special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None or tokenizer.eos_token == '':
special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None or tokenizer.bos_token == '':
special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None or tokenizer.unk_token == '':
special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
preprocessor = TextGenerationTransformersPreprocessor(
model_dir,
tokenizer=tokenizer,
src_txt=config.preprocessor.src_txt,
tgt_txt=config.preprocessor.tgt_txt,
sequence_length=getattr(config.preprocessor, 'sequence_length', None))
if args.use_lora != 0:
lora_config = LoRAConfig(
2023-08-29 17:27:18 +08:00
target_modules=['pack'],
r=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout)
model = model.bfloat16()
2023-08-29 17:27:18 +08:00
model = Swift.prepare_model(model, lora_config)
kwargs = dict(
model=model,
cfg_file=cfg_file,
preprocessor=preprocessor,
train_dataset=train_dataset,
eval_dataset=validation_dataset,
seed=args.seed,
cfg_modify_fn=cfg_modify_fn)
trainer: EpochBasedTrainer = build_trainer(
name=args.trainer, default_args=kwargs)
trainer.train()