Files
modelscope/tests/pipelines/test_multilingual_named_entity_recognition.py

103 lines
4.6 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import (LSTMCRFForNamedEntityRecognition,
TransformerCRFForNamedEntityRecognition)
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import (NamedEntityRecognitionThaiPipeline,
NamedEntityRecognitionVietPipeline)
from modelscope.preprocessors import NERPreprocessorThai, NERPreprocessorViet
from modelscope.utils.constant import Tasks
from modelscope.utils.demo_utils import DemoCompatibilityCheck
from modelscope.utils.test_utils import test_level
class MultilingualNamedEntityRecognitionTest(unittest.TestCase,
DemoCompatibilityCheck):
def setUp(self) -> None:
self.task = Tasks.named_entity_recognition
self.model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
thai_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
thai_sentence = 'เครื่องชั่งดิจิตอลแบบตั้งพื้น150kg.'
viet_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_viet-ecommerce-title'
viet_sentence = 'Nón vành dễ thương cho bé gái'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_by_direct_model_download_thai(self):
cache_path = snapshot_download(self.thai_tcrf_model_id)
tokenizer = NERPreprocessorThai(cache_path)
model = TransformerCRFForNamedEntityRecognition(
cache_path, tokenizer=tokenizer)
pipeline1 = NamedEntityRecognitionThaiPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(f'thai_sentence: {self.thai_sentence}\n'
f'pipeline1:{pipeline1(input=self.thai_sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.thai_sentence)}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_tcrf_with_model_from_modelhub_thai(self):
model = Model.from_pretrained(self.thai_tcrf_model_id)
tokenizer = NERPreprocessorThai(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.thai_sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_thai(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.thai_tcrf_model_id)
print(pipeline_ins(input=self.thai_sentence))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_by_direct_model_download_viet(self):
cache_path = snapshot_download(self.viet_tcrf_model_id)
tokenizer = NERPreprocessorViet(cache_path)
model = TransformerCRFForNamedEntityRecognition(
cache_path, tokenizer=tokenizer)
pipeline1 = NamedEntityRecognitionVietPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(f'viet_sentence: {self.viet_sentence}\n'
f'pipeline1:{pipeline1(input=self.viet_sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.viet_sentence)}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_tcrf_with_model_from_modelhub_viet(self):
model = Model.from_pretrained(self.viet_tcrf_model_id)
tokenizer = NERPreprocessorViet(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.viet_sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_viet(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.viet_tcrf_model_id)
print(pipeline_ins(input=self.viet_sentence))
@unittest.skip('demo compatibility test is only enabled on a needed-basis')
def test_demo_compatibility(self):
self.compatibility_check()
if __name__ == '__main__':
unittest.main()