Files
modelscope/examples/pytorch/llm/utils/models.py

193 lines
6.4 KiB
Python
Raw Normal View History

2023-07-29 00:06:27 +08:00
import os
from typing import Any, Dict, NamedTuple, Optional
2023-07-26 18:12:55 +08:00
import torch
from torch import dtype as Dtype
from modelscope import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, Model,
get_logger, read_config, snapshot_download)
from modelscope.models.nlp.chatglm2 import ChatGLM2Config, ChatGLM2Tokenizer
from modelscope.models.nlp.qwen import QWenConfig, QWenTokenizer
2023-07-26 18:12:55 +08:00
logger = get_logger()
2023-07-29 00:06:27 +08:00
def _add_special_token(tokenizer, special_token_mapper: Dict[str,
Any]) -> None:
for k, v in special_token_mapper:
setattr(tokenizer, k, v)
assert tokenizer.eos_token is not None
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
2023-07-26 18:12:55 +08:00
def get_model_tokenizer_default(model_dir: str,
2023-07-29 00:06:27 +08:00
torch_dtype: Dtype,
load_model: bool = True):
2023-07-26 18:12:55 +08:00
"""load from an independent repository"""
model_config = AutoConfig.from_pretrained(
model_dir, trust_remote_code=True)
model_config.torch_dtype = torch_dtype
logger.info(f'model_config: {model_config}')
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True)
model = None
if load_model:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
config=model_config,
device_map='auto',
torch_dtype=torch_dtype,
trust_remote_code=True)
return model, tokenizer
def get_model_tokenizer_polylm(model_dir: str,
torch_dtype: Dtype,
load_model: bool = True):
"""load from an independent repository"""
model_config = AutoConfig.from_pretrained(
model_dir, trust_remote_code=True)
model_config.torch_dtype = torch_dtype
logger.info(f'model_config: {model_config}')
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False)
model = None
if load_model:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
config=model_config,
device_map='auto',
torch_dtype=torch_dtype,
trust_remote_code=True)
return model, tokenizer
2023-07-26 18:12:55 +08:00
def get_model_tokenizer_chatglm2(model_dir: str,
2023-07-29 00:06:27 +08:00
torch_dtype: Dtype,
load_model: bool = True):
2023-07-26 18:12:55 +08:00
"""load from ms library"""
config = read_config(model_dir)
logger.info(config)
model_config = ChatGLM2Config.from_pretrained(model_dir)
model_config.torch_dtype = torch_dtype
logger.info(model_config)
tokenizer = ChatGLM2Tokenizer.from_pretrained(model_dir)
model = None
if load_model:
model = Model.from_pretrained(
model_dir,
cfg_dict=config,
config=model_config,
device_map='auto',
torch_dtype=torch_dtype)
return model, tokenizer
def get_model_tokenizer_qwen(model_dir: str,
torch_dtype: Dtype,
load_model: bool = True):
config = read_config(model_dir)
logger.info(config)
model_config = QWenConfig.from_pretrained(model_dir)
model_config.torch_dtype = torch_dtype
logger.info(model_config)
tokenizer = QWenTokenizer.from_pretrained(model_dir)
model = None
if load_model:
model = Model.from_pretrained(
model_dir,
cfg_dict=config,
config=model_config,
device_map='auto',
torch_dtype=torch_dtype)
return model, tokenizer
2023-07-26 18:12:55 +08:00
class LoRATM(NamedTuple):
# default lora target modules
baichuan = ['W_pack']
chatglm2 = ['query_key_value']
llama2 = ['q_proj', 'k_proj', 'v_proj']
qwen = ['c_attn']
polylm = ['c_attn']
2023-07-26 18:12:55 +08:00
# Reference: 'https://modelscope.cn/models/{model_id}/summary'
2023-07-29 00:06:27 +08:00
# keys: 'model_id', 'revision', 'torch_dtype', 'get_function',
# 'ignore_file_pattern', 'special_token_mapper', 'lora_TM'
2023-07-26 18:12:55 +08:00
MODEL_MAPPER = {
'baichuan-7b': {
2023-07-29 00:06:27 +08:00
'model_id': 'baichuan-inc/baichuan-7B', # model id or model dir
2023-07-26 18:12:55 +08:00
'revision': 'v1.0.7',
'lora_TM': LoRATM.baichuan
},
'baichuan-13b': {
'model_id': 'baichuan-inc/Baichuan-13B-Base',
'revision': 'v1.0.3',
2023-07-29 00:06:27 +08:00
'torch_dtype': torch.bfloat16,
2023-07-26 18:12:55 +08:00
'lora_TM': LoRATM.baichuan
},
2023-07-29 00:06:27 +08:00
'chatglm2-6b': {
2023-07-26 18:12:55 +08:00
'model_id': 'ZhipuAI/chatglm2-6b',
'revision': 'v1.0.6',
'get_function': get_model_tokenizer_chatglm2,
'lora_TM': LoRATM.chatglm2
},
'llama2-7b': {
'model_id': 'modelscope/Llama-2-7b-ms',
'revision': 'v1.0.2',
'ignore_file_pattern': [r'.+\.bin$'], # use safetensors
'lora_TM': LoRATM.llama2
},
'llama2-13b': {
'model_id': 'modelscope/Llama-2-13b-ms',
'revision': 'v1.0.2',
'ignore_file_pattern': [r'.+\.bin$'],
'lora_TM': LoRATM.llama2
},
'openbuddy-llama2-13b': {
'model_id': 'OpenBuddy/openbuddy-llama2-13b-v8.1-fp16',
'revision': 'v1.0.0',
2023-07-26 18:12:55 +08:00
'lora_TM': LoRATM.llama2
},
'qwen-7b': {
'model_id': 'QWen/qwen-7b',
'revision': 'v1.0.0',
'get_function': get_model_tokenizer_qwen,
'torch_dtype': torch.bfloat16,
'lora_TM': LoRATM.qwen,
},
'polylm-13b': {
'model_id': 'damo/nlp_polylm_13b_text_generation',
'revision': 'v1.0.3',
'get_function': get_model_tokenizer_polylm,
'torch_dtype': torch.bfloat16,
'lora_TM': LoRATM.polylm
2023-07-26 18:12:55 +08:00
}
}
def get_model_tokenizer(model_type: str,
2023-07-29 00:06:27 +08:00
torch_dtype: Optional[Dtype] = None,
load_model: bool = True):
2023-07-26 18:12:55 +08:00
data = MODEL_MAPPER.get(model_type)
if data is None:
raise ValueError(f'model_type: {model_type}')
2023-07-29 00:06:27 +08:00
2023-07-26 18:12:55 +08:00
model_id = data['model_id']
get_function = data.get('get_function', get_model_tokenizer_default)
ignore_file_pattern = data.get('ignore_file_pattern', [])
2023-07-29 00:06:27 +08:00
special_token_mapper = data.get('special_token_mapper', {})
if torch_dtype is None:
torch_dtype = data.get('torch_dtype', torch.float16)
model_dir = model_id
if not os.path.exists(model_id):
revision = data.get('revision', 'master')
model_dir = snapshot_download(
model_id, revision, ignore_file_pattern=ignore_file_pattern)
model, tokenizer = get_function(model_dir, torch_dtype, load_model)
_add_special_token(tokenizer, special_token_mapper)
2023-07-26 18:12:55 +08:00
return model, tokenizer, model_dir