Files
modelscope/tests/trainers/test_trainer_with_nlp.py

103 lines
3.6 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models.nlp.sbert_for_sequence_classification import \
SbertTextClassfier
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile
from modelscope.utils.test_utils import test_level
class TestTrainerWithNlp(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
from datasets import Dataset
dataset_dict = {
'sentence1': [
'This is test sentence1-1', 'This is test sentence2-1',
'This is test sentence3-1'
],
'sentence2': [
'This is test sentence1-2', 'This is test sentence2-2',
'This is test sentence3-2'
],
'label': [0, 1, 1]
}
dataset = Dataset.from_dict(dataset_dict)
self.dataset = MsDataset.from_hf_dataset(dataset)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_trainer(self):
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
kwargs = dict(
model=model_id,
train_dataset=self.dataset,
eval_dataset=self.dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(10):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_trainer_with_backbone_head(self):
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
kwargs = dict(
model=model_id,
train_dataset=self.dataset,
eval_dataset=self.dataset,
work_dir=self.tmp_dir,
model_revision='beta')
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(10):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_model_and_args(self):
tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
cache_path = snapshot_download(model_id)
model = SbertTextClassfier.from_pretrained(cache_path)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
train_dataset=self.dataset,
eval_dataset=self.dataset,
max_epochs=2,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(2):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()