mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-18 01:07:44 +01:00
86 lines
3.3 KiB
Markdown
86 lines
3.3 KiB
Markdown
|
|
# Pipeline使用教程
|
|||
|
|
|
|||
|
|
本文将简单介绍如何使用`pipeline`函数加载模型进行推理。`pipeline`函数支持按照任务类型、模型名称从模型仓库
|
|||
|
|
拉取模型进行进行推理,当前支持的任务有
|
|||
|
|
|
|||
|
|
* 人像抠图 (image-matting)
|
|||
|
|
* 基于bert的语义情感分析 (bert-sentiment-analysis)
|
|||
|
|
|
|||
|
|
本文将从如下方面进行讲解如何使用Pipeline模块:
|
|||
|
|
* 使用pipeline()函数进行推理
|
|||
|
|
* 指定特定预处理、特定模型进行推理
|
|||
|
|
* 不同场景推理任务示例
|
|||
|
|
|
|||
|
|
## Pipeline基本用法
|
|||
|
|
|
|||
|
|
1. pipeline函数支持指定特定任务名称,加载任务默认模型,创建对应Pipeline对象
|
|||
|
|
注: 当前还未与modelhub进行打通,需要手动下载模型,创建pipeline时需要指定本地模型路径,未来会支持指定模型名称从远端仓库
|
|||
|
|
拉取模型并初始化。
|
|||
|
|
|
|||
|
|
下载模型文件
|
|||
|
|
```shell
|
|||
|
|
wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/matting_person.pb
|
|||
|
|
```
|
|||
|
|
执行python命令
|
|||
|
|
```python
|
|||
|
|
>>> from maas_lib.pipelines import pipeline
|
|||
|
|
>>> img_matting = pipeline(task='image-matting', model_path='matting_person.pb')
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
2. 传入单张图像url进行处理
|
|||
|
|
``` python
|
|||
|
|
>>> import cv2
|
|||
|
|
>>> result = img_matting('http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png')
|
|||
|
|
>>> cv2.imwrite('result.png', result['output_png'])
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
pipeline对象也支持传入一个列表输入,返回对应输出列表,每个元素对应输入样本的返回结果
|
|||
|
|
```python
|
|||
|
|
results = img_matting(
|
|||
|
|
[
|
|||
|
|
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
|
|||
|
|
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
|
|||
|
|
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png',
|
|||
|
|
])
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
如果pipeline对应有一些后处理参数,也支持通过调用时候传入.
|
|||
|
|
```python
|
|||
|
|
pipe = pipeline(task_name)
|
|||
|
|
result = pipe(input, post_process_args)
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
## 指定预处理、模型进行推理
|
|||
|
|
pipeline函数支持传入实例化的预处理对象、模型对象,从而支持用户在推理过程中定制化预处理、模型。
|
|||
|
|
下面以文本情感分类为例进行介绍。
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
注: 当前release版本还未实现AutoModel的语法糖,需要手动实例化模型,后续会加上对应语法糖简化调用
|
|||
|
|
|
|||
|
|
下载模型文件
|
|||
|
|
```shell
|
|||
|
|
wget https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com/release/easynlp_modelzoo/alibaba-pai/bert-base-sst2.zip && unzip bert-base-sst2.zip
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
创建tokenzier和模型
|
|||
|
|
```python
|
|||
|
|
>>> from maas_lib.models.nlp import SequenceClassificationModel
|
|||
|
|
>>> path = 'bert-base-sst2'
|
|||
|
|
>>> model = SequenceClassificationModel(path)
|
|||
|
|
>>> from maas_lib.preprocessors import SequenceClassificationPreprocessor
|
|||
|
|
>>> tokenizer = SequenceClassificationPreprocessor(
|
|||
|
|
path, first_sequence='sentence', second_sequence=None)
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
使用tokenizer和模型对象创建pipeline
|
|||
|
|
```python
|
|||
|
|
>>> from maas_lib.pipelines import pipeline
|
|||
|
|
>>> semantic_cls = pipeline('text-classification', model=model, preprocessor=tokenizer)
|
|||
|
|
>>> semantic_cls("Hello world!")
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
## 不同场景任务推理示例
|
|||
|
|
|
|||
|
|
人像抠图、语义分类建上述两个例子。 其他例子未来添加。
|