Files
modelscope/tests/trainers/test_image_instance_segmentation_trainer.py

118 lines
4.2 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import zipfile
from functools import partial
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models.cv.image_instance_segmentation import \
CascadeMaskRCNNSwinModel
from modelscope.models.cv.image_instance_segmentation.datasets import \
ImageInstanceSegmentationCocoDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config
from modelscope.utils.constant import ModelFile
from modelscope.utils.test_utils import test_level
class TestImageInstanceSegmentationTrainer(unittest.TestCase):
model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
cache_path = snapshot_download(self.model_id)
config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
cfg = Config.from_file(config_path)
data_root = cfg.dataset.data_root
classes = tuple(cfg.dataset.classes)
max_epochs = cfg.train.max_epochs
samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
if data_root is None:
# use default toy data
dataset_path = os.path.join(cache_path, 'toydata.zip')
with zipfile.ZipFile(dataset_path, 'r') as zipf:
zipf.extractall(cache_path)
data_root = cache_path + '/toydata/'
classes = ('Cat', 'Dog')
self.train_dataset = ImageInstanceSegmentationCocoDataset(
data_root + 'annotations/instances_train.json',
classes=classes,
data_root=data_root,
img_prefix=data_root + 'images/train/',
seg_prefix=None,
test_mode=False)
self.eval_dataset = ImageInstanceSegmentationCocoDataset(
data_root + 'annotations/instances_val.json',
classes=classes,
data_root=data_root,
img_prefix=data_root + 'images/val/',
seg_prefix=None,
test_mode=True)
from mmcv.parallel import collate
self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
self.max_epochs = max_epochs
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer(self):
kwargs = dict(
model=self.model_id,
data_collator=self.collate_fn,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name='image-instance-segmentation', default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_model_and_args(self):
tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
cache_path = snapshot_download(self.model_id)
model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
data_collator=self.collate_fn,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name='image-instance-segmentation', default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()