2022-09-01 22:17:14 +08:00
|
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
|
|
|
from modelscope.models import Model
|
|
|
|
|
from modelscope.models.nlp import DebertaV2ForMaskedLM
|
|
|
|
|
from modelscope.pipelines import pipeline
|
|
|
|
|
from modelscope.pipelines.nlp import FillMaskPipeline
|
2022-09-27 23:08:33 +08:00
|
|
|
from modelscope.preprocessors import NLPPreprocessor
|
2022-09-01 22:17:14 +08:00
|
|
|
from modelscope.utils.constant import Tasks
|
|
|
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DeBERTaV2TaskTest(unittest.TestCase):
|
|
|
|
|
model_id_deberta = 'damo/nlp_debertav2_fill-mask_chinese-lite'
|
|
|
|
|
|
|
|
|
|
ori_text = '你师父差得动你,你师父可差不动我。'
|
|
|
|
|
test_input = '你师父差得动你,你师父可[MASK]不动我。'
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
|
|
|
def test_run_by_direct_model_download(self):
|
|
|
|
|
model_dir = snapshot_download(self.model_id_deberta)
|
2022-09-27 23:08:33 +08:00
|
|
|
preprocessor = NLPPreprocessor(
|
2022-09-01 22:17:14 +08:00
|
|
|
model_dir, first_sequence='sentence', second_sequence=None)
|
|
|
|
|
model = DebertaV2ForMaskedLM.from_pretrained(model_dir)
|
|
|
|
|
pipeline1 = FillMaskPipeline(model, preprocessor)
|
|
|
|
|
pipeline2 = pipeline(
|
|
|
|
|
Tasks.fill_mask, model=model, preprocessor=preprocessor)
|
|
|
|
|
ori_text = self.ori_text
|
|
|
|
|
test_input = self.test_input
|
|
|
|
|
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
|
|
|
|
|
f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n')
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
|
|
|
def test_run_with_model_from_modelhub(self):
|
|
|
|
|
# sbert
|
|
|
|
|
print(self.model_id_deberta)
|
|
|
|
|
model = Model.from_pretrained(self.model_id_deberta)
|
2022-09-27 23:08:33 +08:00
|
|
|
preprocessor = NLPPreprocessor(
|
2022-09-01 22:17:14 +08:00
|
|
|
model.model_dir, first_sequence='sentence', second_sequence=None)
|
|
|
|
|
pipeline_ins = pipeline(
|
|
|
|
|
task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
|
|
|
|
|
print(
|
|
|
|
|
f'\nori_text: {self.ori_text}\ninput: {self.test_input}\npipeline: '
|
|
|
|
|
f'{pipeline_ins(self.test_input)}\n')
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
|
|
|
def test_run_with_model_name(self):
|
|
|
|
|
pipeline_ins = pipeline(
|
|
|
|
|
task=Tasks.fill_mask, model=self.model_id_deberta)
|
|
|
|
|
ori_text = self.ori_text
|
|
|
|
|
test_input = self.test_input
|
|
|
|
|
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
|
|
|
|
|
f'{pipeline_ins(test_input)}\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|