mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 09:39:23 +01:00
59 lines
2.5 KiB
Python
59 lines
2.5 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|||
|
|
import unittest
|
|||
|
|
|
|||
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|||
|
|
from modelscope.models import Model
|
|||
|
|
from modelscope.models.nlp import SbertForSentimentClassification
|
|||
|
|
from modelscope.pipelines import SentimentClassificationPipeline, pipeline
|
|||
|
|
from modelscope.preprocessors import SentimentClassificationPreprocessor
|
|||
|
|
from modelscope.utils.constant import Tasks
|
|||
|
|
from modelscope.utils.test_utils import test_level
|
|||
|
|
|
|||
|
|
|
|||
|
|
class SentimentClassificationTest(unittest.TestCase):
|
|||
|
|
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
|||
|
|
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
|
|||
|
|
|
|||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|||
|
|
def test_run_with_direct_file_download(self):
|
|||
|
|
cache_path = snapshot_download(self.model_id)
|
|||
|
|
tokenizer = SentimentClassificationPreprocessor(cache_path)
|
|||
|
|
model = SbertForSentimentClassification(
|
|||
|
|
cache_path, tokenizer=tokenizer)
|
|||
|
|
pipeline1 = SentimentClassificationPipeline(
|
|||
|
|
model, preprocessor=tokenizer)
|
|||
|
|
pipeline2 = pipeline(
|
|||
|
|
Tasks.sentiment_classification,
|
|||
|
|
model=model,
|
|||
|
|
preprocessor=tokenizer)
|
|||
|
|
print(f'sentence1: {self.sentence1}\n'
|
|||
|
|
f'pipeline1:{pipeline1(input=self.sentence1)}')
|
|||
|
|
print()
|
|||
|
|
print(f'sentence1: {self.sentence1}\n'
|
|||
|
|
f'pipeline1: {pipeline2(input=self.sentence1)}')
|
|||
|
|
|
|||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|||
|
|
def test_run_with_model_from_modelhub(self):
|
|||
|
|
model = Model.from_pretrained(self.model_id)
|
|||
|
|
tokenizer = SentimentClassificationPreprocessor(model.model_dir)
|
|||
|
|
pipeline_ins = pipeline(
|
|||
|
|
task=Tasks.sentiment_classification,
|
|||
|
|
model=model,
|
|||
|
|
preprocessor=tokenizer)
|
|||
|
|
print(pipeline_ins(input=self.sentence1))
|
|||
|
|
|
|||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|||
|
|
def test_run_with_model_name(self):
|
|||
|
|
pipeline_ins = pipeline(
|
|||
|
|
task=Tasks.sentiment_classification, model=self.model_id)
|
|||
|
|
print(pipeline_ins(input=self.sentence1))
|
|||
|
|
|
|||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|||
|
|
def test_run_with_default_model(self):
|
|||
|
|
pipeline_ins = pipeline(task=Tasks.sentiment_classification)
|
|||
|
|
print(pipeline_ins(input=self.sentence1))
|
|||
|
|
|
|||
|
|
|
|||
|
|
if __name__ == '__main__':
|
|||
|
|
unittest.main()
|