Files
modelscope/tests/pipelines/test_sentence_embedding.py

83 lines
3.3 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import shutil
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import SentenceEmbedding
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import SentenceEmbeddingPipeline
from modelscope.preprocessors import SentenceEmbeddingPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class SentenceEmbeddingTest(unittest.TestCase):
model_id = 'damo/nlp_corom_sentence-embedding_english-base'
inputs = {
'source_sentence': ["how long it take to get a master's degree"],
'sentences_to_compare': [
"On average, students take about 18 to 24 months to complete a master's degree.",
'On the other hand, some students prefer to go at a slower pace and choose to take ',
'several years to complete their studies.',
'It can take anywhere from two semesters'
]
}
inputs2 = {
'source_sentence': ["how long it take to get a master's degree"],
'sentences_to_compare': [
"On average, students take about 18 to 24 months to complete a master's degree."
]
}
inputs3 = {
'source_sentence': ["how long it take to get a master's degree"],
'sentences_to_compare': []
}
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = SentenceEmbeddingPreprocessor(cache_path)
model = SentenceEmbedding.from_pretrained(cache_path)
pipeline1 = SentenceEmbeddingPipeline(model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
print(f'inputs: {self.inputs}\n'
f'pipeline1:{pipeline1(input=self.inputs)}')
print()
print(f'pipeline2: {pipeline2(input=self.inputs)}')
print()
print(f'inputs: {self.inputs2}\n'
f'pipeline1:{pipeline1(input=self.inputs2)}')
print()
print(f'pipeline2: {pipeline2(input=self.inputs2)}')
print(f'inputs: {self.inputs3}\n'
f'pipeline1:{pipeline1(input=self.inputs3)}')
print()
print(f'pipeline2: {pipeline2(input=self.inputs3)}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = SentenceEmbeddingPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
print(pipeline_ins(input=self.inputs))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.sentence_embedding, model=self.model_id)
print(pipeline_ins(input=self.inputs))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.sentence_embedding)
print(pipeline_ins(input=self.inputs))
if __name__ == '__main__':
unittest.main()