mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 01:29:24 +01:00
83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import shutil
|
||
|
|
import unittest
|
||
|
|
|
||
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
||
|
|
from modelscope.models import Model
|
||
|
|
from modelscope.models.nlp import SentenceEmbedding
|
||
|
|
from modelscope.pipelines import pipeline
|
||
|
|
from modelscope.pipelines.nlp import SentenceEmbeddingPipeline
|
||
|
|
from modelscope.preprocessors import SentenceEmbeddingPreprocessor
|
||
|
|
from modelscope.utils.constant import Tasks
|
||
|
|
from modelscope.utils.test_utils import test_level
|
||
|
|
|
||
|
|
|
||
|
|
class SentenceEmbeddingTest(unittest.TestCase):
|
||
|
|
model_id = 'damo/nlp_corom_sentence-embedding_english-base'
|
||
|
|
inputs = {
|
||
|
|
'source_sentence': ["how long it take to get a master's degree"],
|
||
|
|
'sentences_to_compare': [
|
||
|
|
"On average, students take about 18 to 24 months to complete a master's degree.",
|
||
|
|
'On the other hand, some students prefer to go at a slower pace and choose to take ',
|
||
|
|
'several years to complete their studies.',
|
||
|
|
'It can take anywhere from two semesters'
|
||
|
|
]
|
||
|
|
}
|
||
|
|
|
||
|
|
inputs2 = {
|
||
|
|
'source_sentence': ["how long it take to get a master's degree"],
|
||
|
|
'sentences_to_compare': [
|
||
|
|
"On average, students take about 18 to 24 months to complete a master's degree."
|
||
|
|
]
|
||
|
|
}
|
||
|
|
|
||
|
|
inputs3 = {
|
||
|
|
'source_sentence': ["how long it take to get a master's degree"],
|
||
|
|
'sentences_to_compare': []
|
||
|
|
}
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
|
|
def test_run_by_direct_model_download(self):
|
||
|
|
cache_path = snapshot_download(self.model_id)
|
||
|
|
tokenizer = SentenceEmbeddingPreprocessor(cache_path)
|
||
|
|
model = SentenceEmbedding.from_pretrained(cache_path)
|
||
|
|
pipeline1 = SentenceEmbeddingPipeline(model, preprocessor=tokenizer)
|
||
|
|
pipeline2 = pipeline(
|
||
|
|
Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
|
||
|
|
print(f'inputs: {self.inputs}\n'
|
||
|
|
f'pipeline1:{pipeline1(input=self.inputs)}')
|
||
|
|
print()
|
||
|
|
print(f'pipeline2: {pipeline2(input=self.inputs)}')
|
||
|
|
print()
|
||
|
|
print(f'inputs: {self.inputs2}\n'
|
||
|
|
f'pipeline1:{pipeline1(input=self.inputs2)}')
|
||
|
|
print()
|
||
|
|
print(f'pipeline2: {pipeline2(input=self.inputs2)}')
|
||
|
|
print(f'inputs: {self.inputs3}\n'
|
||
|
|
f'pipeline1:{pipeline1(input=self.inputs3)}')
|
||
|
|
print()
|
||
|
|
print(f'pipeline2: {pipeline2(input=self.inputs3)}')
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
|
|
def test_run_with_model_from_modelhub(self):
|
||
|
|
model = Model.from_pretrained(self.model_id)
|
||
|
|
tokenizer = SentenceEmbeddingPreprocessor(model.model_dir)
|
||
|
|
pipeline_ins = pipeline(
|
||
|
|
task=Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
|
||
|
|
print(pipeline_ins(input=self.inputs))
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
|
|
def test_run_with_model_name(self):
|
||
|
|
pipeline_ins = pipeline(
|
||
|
|
task=Tasks.sentence_embedding, model=self.model_id)
|
||
|
|
print(pipeline_ins(input=self.inputs))
|
||
|
|
|
||
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
|
|
def test_run_with_default_model(self):
|
||
|
|
pipeline_ins = pipeline(task=Tasks.sentence_embedding)
|
||
|
|
print(pipeline_ins(input=self.inputs))
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|