Files
modelscope/tests/pipelines/test_part_of_speech.py

53 lines
2.2 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import shutil
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import TokenClassificationModel
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import TokenClassificationPipeline
from modelscope.preprocessors import TokenClassificationPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class PartOfSpeechTest(unittest.TestCase):
model_id = 'damo/nlp_structbert_part-of-speech_chinese-lite'
sentence = '今天天气不错,适合出去游玩'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = TokenClassificationPreprocessor(cache_path)
model = TokenClassificationModel.from_pretrained(cache_path)
pipeline1 = TokenClassificationPipeline(model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.token_classification, model=model, preprocessor=tokenizer)
print(f'sentence: {self.sentence}\n'
f'pipeline1:{pipeline1(input=self.sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.sentence)}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = TokenClassificationPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.part_of_speech, model=model, preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(task=Tasks.part_of_speech, model=self.model_id)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.part_of_speech)
print(pipeline_ins(input=self.sentence))
if __name__ == '__main__':
unittest.main()