mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-23 03:29:27 +01:00
129 lines
3.9 KiB
Python
129 lines
3.9 KiB
Python
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
|
|
import os
|
||
|
|
import shutil
|
||
|
|
import tempfile
|
||
|
|
import unittest
|
||
|
|
from abc import ABCMeta
|
||
|
|
|
||
|
|
import json
|
||
|
|
import torch
|
||
|
|
from torch import nn
|
||
|
|
from torch.optim import SGD
|
||
|
|
from torch.optim.lr_scheduler import MultiStepLR
|
||
|
|
from torch.utils.data import Dataset
|
||
|
|
|
||
|
|
from modelscope.trainers import build_trainer
|
||
|
|
from modelscope.utils.constant import ModelFile
|
||
|
|
|
||
|
|
|
||
|
|
class DummyDataset(Dataset, metaclass=ABCMeta):
|
||
|
|
"""Base Dataset
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __len__(self):
|
||
|
|
return 10
|
||
|
|
|
||
|
|
def __getitem__(self, idx):
|
||
|
|
return dict(feat=torch.rand((5, )), label=torch.randint(0, 4, (1, )))
|
||
|
|
|
||
|
|
|
||
|
|
class DummyModel(nn.Module):
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
super().__init__()
|
||
|
|
self.linear = nn.Linear(5, 4)
|
||
|
|
self.bn = nn.BatchNorm1d(4)
|
||
|
|
|
||
|
|
def forward(self, feat, labels):
|
||
|
|
x = self.linear(feat)
|
||
|
|
|
||
|
|
x = self.bn(x)
|
||
|
|
loss = torch.sum(x)
|
||
|
|
return dict(logits=x, loss=loss)
|
||
|
|
|
||
|
|
|
||
|
|
class IterTimerHookTest(unittest.TestCase):
|
||
|
|
|
||
|
|
def setUp(self):
|
||
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
||
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
||
|
|
if not os.path.exists(self.tmp_dir):
|
||
|
|
os.makedirs(self.tmp_dir)
|
||
|
|
|
||
|
|
def tearDown(self):
|
||
|
|
super().tearDown()
|
||
|
|
shutil.rmtree(self.tmp_dir)
|
||
|
|
|
||
|
|
def test_iter_time_hook(self):
|
||
|
|
json_cfg = {
|
||
|
|
'task': 'image_classification',
|
||
|
|
'train': {
|
||
|
|
'work_dir': self.tmp_dir,
|
||
|
|
'dataloader': {
|
||
|
|
'batch_size_per_gpu': 2,
|
||
|
|
'workers_per_gpu': 1
|
||
|
|
},
|
||
|
|
'hooks': [{
|
||
|
|
'type': 'IterTimerHook',
|
||
|
|
}]
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
||
|
|
with open(config_path, 'w') as f:
|
||
|
|
json.dump(json_cfg, f)
|
||
|
|
|
||
|
|
model = DummyModel()
|
||
|
|
optimizer = SGD(model.parameters(), lr=0.01)
|
||
|
|
lr_scheduler = MultiStepLR(optimizer, milestones=[2, 4])
|
||
|
|
trainer_name = 'EpochBasedTrainer'
|
||
|
|
kwargs = dict(
|
||
|
|
cfg_file=config_path,
|
||
|
|
model=model,
|
||
|
|
train_dataset=DummyDataset(),
|
||
|
|
optimizers=(optimizer, lr_scheduler),
|
||
|
|
max_epochs=5)
|
||
|
|
|
||
|
|
trainer = build_trainer(trainer_name, kwargs)
|
||
|
|
train_dataloader = trainer._build_dataloader_with_dataset(
|
||
|
|
trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
|
||
|
|
trainer.register_optimizers_hook()
|
||
|
|
trainer.register_hook_from_cfg(trainer.cfg.train.hooks)
|
||
|
|
|
||
|
|
trainer.invoke_hook('before_run')
|
||
|
|
for i in range(trainer._epoch, trainer._max_epochs):
|
||
|
|
trainer.invoke_hook('before_train_epoch')
|
||
|
|
for _, data_batch in enumerate(train_dataloader):
|
||
|
|
trainer.invoke_hook('before_train_iter')
|
||
|
|
trainer.train_step(trainer.model, data_batch)
|
||
|
|
trainer.invoke_hook('after_train_iter')
|
||
|
|
|
||
|
|
self.assertIn('data_load_time', trainer.log_buffer.val_history)
|
||
|
|
self.assertIn('time', trainer.log_buffer.val_history)
|
||
|
|
self.assertIn('loss', trainer.log_buffer.val_history)
|
||
|
|
|
||
|
|
trainer.invoke_hook('after_train_epoch')
|
||
|
|
|
||
|
|
target_len = 5 * (i + 1)
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.val_history['data_load_time']),
|
||
|
|
target_len)
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.val_history['time']), target_len)
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.val_history['loss']), target_len)
|
||
|
|
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.n_history['data_load_time']),
|
||
|
|
target_len)
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.n_history['time']), target_len)
|
||
|
|
self.assertEqual(
|
||
|
|
len(trainer.log_buffer.n_history['loss']), target_len)
|
||
|
|
|
||
|
|
trainer.invoke_hook('after_run')
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
unittest.main()
|