Files
modelscope/examples/pytorch/llama/finetune_llama.py

402 lines
14 KiB
Python
Raw Normal View History

# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import logging
import os
from dataclasses import dataclass, field
import json
import torch
2023-08-29 17:27:18 +08:00
from swift import LoRAConfig, Swift
from modelscope import TrainingArgs, build_dataset_from_file
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.models.nlp.llama import LlamaForTextGeneration, LlamaTokenizer
from modelscope.msdatasets import MsDataset
from modelscope.msdatasets.dataset_cls.custom_datasets.torch_custom_dataset import \
TorchCustomDataset
from modelscope.trainers import build_trainer
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = '[PAD]'
DEFAULT_EOS_TOKEN = '</s>'
DEFAULT_BOS_TOKEN = '<s>'
DEFAULT_UNK_TOKEN = '<unk>'
PROMPT_DICT = {
'prompt_input':
('Below is an instruction that describes a task, paired with an input that provides further context. '
'Write a response that appropriately completes the request.\n\n'
'### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:'
),
'prompt_no_input':
('Below is an instruction that describes a task. '
'Write a response that appropriately completes the request.\n\n'
'### Instruction:\n{instruction}\n\n### Response:'),
}
@dataclass(init=False)
class TextGenerationArguments(TrainingArgs):
instruction: str = field(
default='instruction',
metadata={
'help': 'The instruction text key of dataset',
})
input: str = field(
default='input', metadata={
'help': 'The input text key of dataset',
})
output: str = field(
default='output',
metadata={
'help': 'The output text key of dataset',
})
src_txt: str = field(
default=None,
metadata={
'help': 'The source text key of preprocessor',
'cfg_node': 'preprocessor.src_txt'
})
deepspeed: str = field(
default=None,
metadata={
'help': 'The location of DeepSpeed json config file.',
})
use_lora: int = field(
default=0,
metadata={'help': 'Whether to use lora to train the model.'},
)
lora_rank: int = field(
default=32,
metadata={'help': 'The lora rank'},
)
lora_alpha: int = field(
default=32,
metadata={'help': 'The lora alpha'},
)
lora_dropout: float = field(
default=0.05,
metadata={'help': 'The lora dropout'},
)
device_map: str = field(
default=None,
metadata={
'help': 'A map that specifies where each submodule should go.'
})
zero_stage: int = field(
default=None, metadata={'help': 'The stage of zero_optimization'})
def _tokenize_fn(strings, tokenizer):
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors='pt',
padding='longest',
max_length=tokenizer.model_max_length,
truncation=True,
) for text in strings
]
input_ids = labels = [
tokenized.input_ids[0] for tokenized in tokenized_list
]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(sources, targets, tokenizer):
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [
_tokenize_fn(strings, tokenizer) for strings in (examples, sources)
]
input_ids = examples_tokenized['input_ids']
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized['input_ids_lens']):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer,
model):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
class SupervisedDataset(TorchCustomDataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, list_data_dict, tokenizer):
logging.warning('Formatting inputs...')
prompt_input, prompt_no_input = PROMPT_DICT[
'prompt_input'], PROMPT_DICT['prompt_no_input']
sources = [
prompt_input.format_map(example) if example.get('input', '') != ''
else prompt_no_input.format_map(example)
for example in list_data_dict
]
targets = [
f"{example['output']}{tokenizer.eos_token}"
for example in list_data_dict
]
logging.warning('Tokenizing inputs... This may take some time...')
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict['input_ids']
self.labels = data_dict['labels']
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i):
if isinstance(i, int):
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
elif isinstance(i, slice):
return SliceSupervisedDataset(self.input_ids, self.labels, i)
else:
raise TypeError(f'Unsupported input type: {type(i)}')
class SliceSupervisedDataset(TorchCustomDataset):
def __init__(self, input_ids, labels, slice_):
self.input_ids = input_ids[slice_]
self.labels = labels[slice_]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i):
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: LlamaTokenizer
def __call__(self, instances):
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ('input_ids', 'labels'))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
training_args = TextGenerationArguments().parse_cli()
config, args = training_args.to_config()
print(args)
if __name__ == '__main__':
def cfg_modify_fn(cfg):
if args.use_model_config:
cfg.merge_from_dict(config)
else:
cfg = config
cfg.train.lr_scheduler = {
'type': 'CosineAnnealingLR',
'T_max': 1,
'options': {
'by_epoch': False
}
}
cfg.train.optimizer = {
'type': 'AdamW',
'lr': training_args.lr,
'weight_decay': 0.0,
'options': {
'cumulative_iters': 8,
'warmup': {
'type': 'LinearWarmup',
'warmup_ratio': 0.03
}
}
}
cfg.train.logging = {
'interval': training_args.logging_interval,
'by_epoch': False
}
cfg.train['bf16'] = True
cfg.train.dataloader = {
'batch_size_per_gpu': training_args.per_device_train_batch_size,
'workers_per_gpu': 1
}
if 'hooks' not in cfg.train:
cfg.train['hooks'] = []
if args.deepspeed is not None:
cfg.train.hooks.append({
'type': 'DeepspeedHook',
'config': args.deepspeed,
'save_zero_checkpoint': True,
'with_mpu': False,
})
if args.zero_stage is not None:
cfg.train.hooks[-1]['zero_stage'] = args.zero_stage
cfg.preprocessor.sequence_length = 512
return cfg
model_path = args.model if os.path.exists(
args.model) else snapshot_download(args.model)
dataset_mapping_dict = {
args.instruction: 'instruction',
args.input: 'input',
args.output: 'output'
}
if args.dataset_json_file is None:
if args.train_dataset_name is not None and args.val_dataset_name is not None:
train_dataset = MsDataset.load(
args.train_dataset_name,
subset_name=args.train_subset_name,
split=args.train_split,
namespace=args.train_dataset_namespace).remap_columns(
dataset_mapping_dict)
validation_dataset = MsDataset.load(
args.val_dataset_name,
subset_name=args.val_subset_name,
split=args.val_split,
namespace=args.val_dataset_namespace).remap_columns(
dataset_mapping_dict)
elif args.train_dataset_name is not None and args.val_dataset_name is None:
ms_dataset = MsDataset.load(
args.train_dataset_name,
subset_name=args.train_subset_name,
split=args.train_split,
namespace=args.train_dataset_namespace).remap_columns(
dataset_mapping_dict).train_test_split(
test_size=0.02, seed=args.seed)
train_dataset = ms_dataset['train']
validation_dataset = ms_dataset['test']
else:
data_path = training_args.src_txt if training_args.src_txt else os.path.join(
model_path, 'alpaca_data.json')
ms_dataset = MsDataset.load(
'json', data_files=data_path).remap_columns(
dataset_mapping_dict).train_test_split(
test_size=0.02, seed=args.seed)
train_dataset = ms_dataset['train']
validation_dataset = ms_dataset['test']
else:
train_dataset, validation_dataset = build_dataset_from_file(
args.dataset_json_file)
model = LlamaForTextGeneration.from_pretrained(
model_path, device_map=args.device_map)
if args.use_lora != 0:
lora_config = LoRAConfig(
2023-08-29 17:27:18 +08:00
target_modules=['q_proj', 'k_proj', 'v_proj'],
r=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout)
model = model.bfloat16()
2023-08-29 17:27:18 +08:00
model = Swift.prepare_model(model, lora_config)
tokenizer = LlamaTokenizer.from_pretrained(
model_path,
model_max_length=512,
padding_side='right',
)
special_tokens_dict = dict()
if tokenizer.pad_token is None or tokenizer.pad_token == '':
special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None or tokenizer.eos_token == '':
special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None or tokenizer.bos_token == '':
special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None or tokenizer.unk_token == '':
special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
train_dataset = SupervisedDataset(
tokenizer=tokenizer, list_data_dict=train_dataset)
validation_dataset = SupervisedDataset(
tokenizer=tokenizer, list_data_dict=validation_dataset)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
kwargs = dict(
model=model,
cfg_file=os.path.join(model_path, 'configuration.json'),
train_dataset=train_dataset,
eval_dataset=validation_dataset,
data_collator=data_collator,
cfg_modify_fn=cfg_modify_fn)
# Construct trainer and train
trainer = build_trainer(
name=Trainers.text_generation_trainer, default_args=kwargs)
trainer.train()
# prepare for inference
if args.deepspeed and args.zero_stage is None and int(
os.environ.get('LOCAL_RANK', 0)) == 0:
work_dir = config.train.work_dir
tokenizer.save_pretrained(os.path.join(work_dir, 'output'))
os.system(f'rm {work_dir}/output/pytorch_model*')
os.system(
f'python3 {work_dir}/zero_to_fp32.py {work_dir} {work_dir}/output/pytorch_model.bin'
)
os.system(
f'cp {model_path}/configuration.json {work_dir}/output/configuration.json'
)
with open(f'{model_path}/config.json', 'r') as f:
config = json.load(f)
config['vocab_size'] = len(tokenizer)
with open(f'{work_dir}/output/config.json', 'w') as f:
json.dump(config, f)