Files
modelscope/docs/source/quick_start.md

117 lines
3.7 KiB
Markdown
Raw Normal View History

# 快速开始
## python环境配置
首先,参考[文档](https://docs.anaconda.com/anaconda/install/) 安装配置Anaconda环境
安装完成后执行如下命令为maas library创建对应的python环境。
```shell
conda create -n modelscope python=3.6
conda activate modelscope
```
检查python和pip命令是否切换到conda环境下。
```shell
which python
# ~/workspace/anaconda3/envs/modelscope/bin/python
which pip
# ~/workspace/anaconda3/envs/modelscope/bin/pip
```
注: 本项目只支持`python3`环境请勿使用python2环境。
## 第三方依赖安装
ModelScope Library目前支持tensorflowpytorch两大深度学习框架进行模型训练、推理 在Python 3.6+, Pytorch 1.8+, Tensorflow 2.6上测试可运行,用户可以根据所选模型对应的计算框架进行安装,可以参考如下链接进行安装所需框架:
* [Pytorch安装指导](https://pytorch.org/get-started/locally/)
* [Tensorflow安装指导](https://www.tensorflow.org/install/pip)
## ModelScope library 安装
注: 如果在安装过程中遇到错误,请前往[常见问题](faq.md)查找解决方案。
### pip安装
```shell
pip install -r http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/release/maas/modelscope.txt
```
安装成功后,可以执行如下命令进行验证安装是否正确
```shell
python -c "from modelscope.pipelines import pipeline;print(pipeline('image-matting',model='damo/image-matting-person')('http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png'))"
```
### 使用源码安装
适合本地开发调试使用,修改源码后可以直接执行
```shell
git clone git@gitlab.alibaba-inc.com:Ali-MaaS/MaaS-lib.git modelscope
git fetch origin master
git checkout master
cd modelscope
#安装依赖
pip install -r requirements.txt
# 设置PYTHONPATH
export PYTHONPATH=`pwd`
```
安装成功后,可以执行如下命令进行验证安装是否正确
```shell
python -c "from modelscope.pipelines import pipeline;print(pipeline('image-matting',model='damo/image-matting-person')('http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png'))"
```
## 训练
to be done
## 评估
to be done
## 推理
pipeline函数提供了简洁的推理接口示例如下 更多pipeline介绍和示例请参考[pipeline使用教程](tutorials/pipeline.md)
```python
import cv2
import os.path as osp
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
# 根据任务名创建pipeline
img_matting = pipeline(Tasks.image_matting, model='damo/image-matting-person')
# 直接提供图像文件的url作为pipeline推理的输入
result = img_matting(
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png'
)
cv2.imwrite('result.png', result['output_png'])
print(f'Output written to {osp.abspath("result.png")}')
```
此外pipeline接口也能接收Dataset作为输入上面的代码同样可以实现为
```python
import cv2
import os.path as osp
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.pydatasets import PyDataset
# 使用图像url构建PyDataset此处也可通过 input_location = '/dir/to/images' 来使用本地文件夹
input_location = [
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png'
]
dataset = PyDataset.load(input_location, target='image')
img_matting = pipeline(Tasks.image_matting, model='damo/image-matting-person')
# 输入为PyDataset时输出的结果为迭代器
result = img_matting(dataset)
cv2.imwrite('result.png', next(result)['output_png'])
print(f'Output written to {osp.abspath("result.png")}')
```