Files
modelscope/tests/trainers/hooks/logger/test_tensorboard_hook.py

107 lines
3.1 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import glob
import os
import shutil
import tempfile
import unittest
import json
import numpy as np
import torch
from torch import nn
from modelscope.trainers import build_trainer
from modelscope.utils.constant import LogKeys, ModelFile
from modelscope.utils.test_utils import create_dummy_test_dataset
dummy_dataset = create_dummy_test_dataset(
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 4)
self.bn = nn.BatchNorm1d(4)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class TensorboardHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_tensorboard_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'optimizer': {
'type': 'SGD',
'lr': 0.01
},
'lr_scheduler': {
'type': 'StepLR',
'step_size': 2,
},
'hooks': [{
'type': 'TensorboardHook',
'interval': 2
}]
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
trainer_name = 'EpochBasedTrainer'
kwargs = dict(
cfg_file=config_path,
model=DummyModel(),
data_collator=None,
train_dataset=dummy_dataset,
max_epochs=2)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
tb_out_dir = os.path.join(self.tmp_dir, 'tensorboard_output')
events_files = glob.glob(
os.path.join(tb_out_dir, 'events.out.tfevents.*'))
self.assertEqual(len(events_files), 1)
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
ea = EventAccumulator(events_files[0])
ea.Reload()
self.assertEqual(len(ea.Scalars(LogKeys.LOSS)), 10)
self.assertEqual(len(ea.Scalars(LogKeys.LR)), 10)
for i in range(5):
self.assertAlmostEqual(
ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.001)
for i in range(5, 10):
self.assertAlmostEqual(
ea.Scalars(LogKeys.LR)[i].value, 0.001, delta=0.0001)
if __name__ == '__main__':
unittest.main()