Files
modelscope/examples/pytorch/llm_agent/baichuan_sft.ipynb

1815 lines
296 KiB
Plaintext
Raw Permalink Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Baichuan + Lora + Agent\n",
"baichuan-7B是由百川智能开发的一个开源的大规模预训练模型。基于Transformer结构在大约1.2万亿tokens上训练的70亿参数模型支持中英双语上下文窗口长度为4096。在标准的中文和英文权威benchmarkC-EVAL/MMLU上均取得同尺寸最好的效果。"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Ref: https://modelscope.cn/models/baichuan-inc/baichuan-7B/summary\n",
"2. 以下脚本可以在2*A10环境下正常运行, 大概占用40G显存\n",
"3. python>=3.8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 配置实验环境"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
2023-07-15 09:59:53 +08:00
"# !pip install modelscope\n",
"# !pip install numpy pandas matplotlib scikit-learn\n",
"# !pip install transformers datasets\n",
2023-07-15 09:59:53 +08:00
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
"# !pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate\n",
"\n",
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2023-07-02 17:24:09,391] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/hackathon/miniconda3/envs/hackathon/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"2023-07-02 17:24:09,870 - modelscope - INFO - PyTorch version 2.0.1 Found.\n",
"2023-07-02 17:24:09,871 - modelscope - INFO - Loading ast index from /home/hackathon/.cache/modelscope/ast_indexer\n",
"2023-07-02 17:24:09,895 - modelscope - INFO - Loading done! Current index file version is 1.6.2, with md5 ddf811ee982377c1357284a2bfda3dec and a total number of 861 components indexed\n",
"2023-07-02 17:24:10,570 - modelscope - INFO - [0, 1]\n",
"2023-07-02 17:24:10,719 - modelscope - INFO - Using device: cuda:0,1\n",
"2023-07-02 17:24:10,720 - modelscope - INFO - Global seed set to 42\n"
]
}
],
"source": [
"from _common import *\n",
2023-07-15 09:59:53 +08:00
"device_ids = [0, 1]\n",
"select_device(device_ids)\n",
"_ = seed_everything(42)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 导入Model, Tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 17:24:11,036 - modelscope - INFO - Model revision not specified, use default: master in development mode\n",
"2023-07-02 17:24:11,037 - modelscope - INFO - Development mode use revision: master\n",
"2023-07-02 17:24:11,364 - modelscope - INFO - model_config: BaiChuanConfig {\n",
" \"architectures\": [\n",
" \"BaiChuanForCausalLM\"\n",
" ],\n",
" \"auto_map\": {\n",
" \"AutoConfig\": \"configuration_baichuan.BaiChuanConfig\",\n",
" \"AutoModelForCausalLM\": \"modeling_baichuan.BaiChuanForCausalLM\"\n",
" },\n",
" \"bos_token_id\": 1,\n",
" \"eos_token_id\": 2,\n",
" \"hidden_act\": \"silu\",\n",
" \"hidden_size\": 4096,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 11008,\n",
" \"max_position_embeddings\": 4096,\n",
" \"model_type\": \"baichuan\",\n",
" \"num_attention_heads\": 32,\n",
" \"num_hidden_layers\": 32,\n",
" \"pad_token_id\": 0,\n",
" \"rms_norm_eps\": 1e-06,\n",
" \"tie_word_embeddings\": false,\n",
" \"torch_dtype\": \"float16\",\n",
" \"transformers_version\": \"4.30.2\",\n",
" \"use_cache\": true,\n",
" \"vocab_size\": 64000\n",
"}\n",
"\n",
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
]
}
],
"source": [
"WORK_DIR = 'runs/baichuan'\n",
"LORA_TARGET_MODULES = ['W_pack']\n",
"#\n",
2023-07-15 09:59:53 +08:00
"model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5')\n",
"model, tokenizer = get_baichuan7B_model_tokenizer(model_dir)\n",
"#\n",
"GRADIENT_CHECKPOINTING = True\n",
"if GRADIENT_CHECKPOINTING:\n",
" model.gradient_checkpointing_enable()\n",
2023-07-15 09:59:53 +08:00
" model.enable_input_require_grads()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 准备Lora"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 17:24:21,741 - modelscope - INFO - lora_config: LoRAConfig(rank=8, replace_modules=['W_pack'], lora_alpha=32, lora_dropout=0.1, merge_weights=True, use_merged_linear=False, enable_lora=None, fan_in_fan_out=False, bias='none', only_lora_trainable=True, pretrained_weights=None)\n",
"2023-07-02 17:24:36,360 - modelscope - INFO - model.embed_tokens.weight: requires_grad=False\n",
"2023-07-02 17:24:36,360 - modelscope - INFO - model.layers.0.self_attn.W_pack.weight: requires_grad=False\n",
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.W_pack.lora_A: requires_grad=True\n",
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.W_pack.lora_B: requires_grad=True\n",
"2023-07-02 17:24:36,361 - modelscope - INFO - model.layers.0.self_attn.o_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,362 - modelscope - INFO - model.layers.0.mlp.gate_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,362 - modelscope - INFO - model.layers.0.mlp.down_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.mlp.up_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.input_layernorm.weight: requires_grad=False\n",
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.0.post_attention_layernorm.weight: requires_grad=False\n",
"2023-07-02 17:24:36,363 - modelscope - INFO - model.layers.1.self_attn.W_pack.weight: requires_grad=False\n",
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.W_pack.lora_A: requires_grad=True\n",
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.W_pack.lora_B: requires_grad=True\n",
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.self_attn.o_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,364 - modelscope - INFO - model.layers.1.mlp.gate_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.mlp.down_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.mlp.up_proj.weight: requires_grad=False\n",
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.input_layernorm.weight: requires_grad=False\n",
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.1.post_attention_layernorm.weight: requires_grad=False\n",
"2023-07-02 17:24:36,365 - modelscope - INFO - model.layers.2.self_attn.W_pack.weight: requires_grad=False\n",
"2023-07-02 17:24:36,366 - modelscope - INFO - ...\n",
"2023-07-02 17:24:36,368 - modelscope - INFO - BaiChuanForCausalLM: 7004.7539M Params (4.1943M Trainable), 33.5565M Buffers.\n",
"2023-07-02 17:24:36,370 - modelscope - INFO - device: cuda:0, dtype: torch.float16\n"
]
},
{
"data": {
"text/plain": [
"BaiChuanForCausalLM(\n",
" (model): Model(\n",
" (embed_tokens): Embedding(64000, 4096, padding_idx=0)\n",
" (layers): ModuleList(\n",
" (0-31): 32 x DecoderLayer(\n",
" (self_attn): Attention(\n",
" (W_pack): Linear(\n",
" in_features=4096, out_features=12288, bias=False\n",
" (lora_dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
" (rotary_emb): RotaryEmbedding()\n",
" )\n",
" (mlp): MLP(\n",
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
" (act_fn): SiLUActivation()\n",
" )\n",
" (input_layernorm): RMSNorm()\n",
" (post_attention_layernorm): RMSNorm()\n",
" )\n",
" )\n",
" (norm): RMSNorm()\n",
" )\n",
" (lm_head): Linear(in_features=4096, out_features=64000, bias=False)\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"LORA_RANK = 8\n",
"LORA_ALPHA = 32\n",
"LORA_DROPOUT_P = 0.1\n",
"lora_config = LoRAConfig(\n",
2023-08-29 17:27:18 +08:00
" target_modules=LORA_TARGET_MODULES,\n",
" r=LORA_RANK,\n",
" lora_alpha=LORA_ALPHA,\n",
" lora_dropout=LORA_DROPOUT_P)\n",
"logger.info(f'lora_config: {lora_config}')\n",
"Swift.prepare_model(model, lora_config)\n",
"#\n",
"show_freeze_layers(model)\n",
"print_model_info(model)\n",
"_p = list(model.parameters())[100]\n",
"logger.info(f'device: {_p.device}, dtype: {_p.dtype}')\n",
"model.bfloat16()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 导入Dataset"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 5036/5036 [00:12<00:00, 398.82it/s]\n",
"100%|██████████| 285/285 [00:00<00:00, 383.15it/s]\n",
"2023-07-02 17:24:49,863 - modelscope - INFO - Dataset Token Length: 958.649707±371.357483, min=44.000000, max=2045.000000, size=4953\n",
"2023-07-02 17:24:49,864 - modelscope - INFO - Dataset Token Length: 993.447653±337.821458, min=75.000000, max=1946.000000, size=277\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[INPUT_IDS] 你是达摩院的ModelScopeGPT(魔搭助手),你是个大语言模型, 是2023年达摩院的工程师训练得到的。你有多种能力可以通过插件集成魔搭社区的模型api来回复用户的问题还能解答用户使用模型遇到的问题和模型知识相关问答。1. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"url\": \"http://109.199.101.10:1485/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
"\n",
"2. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"url\": \"http://9.32.64.200:5873/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
"\n",
"3. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"url\": \"http://54.149.78.185:3979/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本根据schema要抽取的内容找出其中对应信息并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}} \n",
"\n",
"### 用户\n",
"按照给定的schema抽取出下面文本对应的信息\n",
"schema{\"人物\": null, \"地理位置\": null, \"组织机构\": null}\n",
"近日美国政府宣布将对中国1000多种商品加征关税并威胁进一步加征关税。 \n",
"\n",
"### 助手\n",
"<s> <|startofthink|>```JSON\n",
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日美国政府宣布将对中国1000多种商品加征关税并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
"```<|endofthink|>\n",
"\n",
"<|startofexec|>```JSON\n",
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
"```<|endofexec|>\n",
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。</s>\n",
"\n",
"[LABLES] <unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日美国政府宣布将对中国1000多种商品加征关税并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
"```<|endofthink|>\n",
"\n",
"<|startofexec|>```JSON\n",
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
"```<|endofexec|>\n",
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。</s>\n"
]
}
],
"source": [
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
"train_dataset = make_dataset('train', tokenize_function)\n",
"val_dataset = make_dataset('validation', tokenize_function)\n",
"# Data analysis\n",
"stat_dataset(train_dataset)\n",
"stat_dataset(val_dataset)\n",
"data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)\n",
"print_examples(train_dataset[0], tokenizer)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 配置Config"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 17:24:49,892 - modelscope - INFO - work_dir: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n"
]
}
],
"source": [
"cfg_file = os.path.join(model_dir, 'configuration.json')\n",
"#\n",
"BATCH_SIZE = 1\n",
"MAX_EPOCHS = 1\n",
"T_max = get_T_max(len(train_dataset), BATCH_SIZE, MAX_EPOCHS, True)\n",
"WORK_DIR = get_work_dir(WORK_DIR)\n",
"EVAL_INTERVAL = 200\n",
"CONFIG = Config({\n",
" 'train': {\n",
" 'dataloader': {\n",
" 'batch_size_per_gpu': BATCH_SIZE,\n",
" 'workers_per_gpu': 1,\n",
" 'shuffle': True,\n",
" 'drop_last': True,\n",
" 'pin_memory': True\n",
" },\n",
" 'max_epochs': MAX_EPOCHS,\n",
" 'work_dir': WORK_DIR,\n",
" 'optimizer': {\n",
" 'type': 'AdamW',\n",
" 'lr': 1e-4,\n",
" 'weight_decay': 0.01,\n",
" 'options': {\n",
" 'cumulative_iters': 16, 'grad_clip': {\n",
" 'norm_type': 2,\n",
" 'max_norm': 2.0\n",
" }\n",
" }\n",
" },\n",
" 'lr_scheduler': {\n",
" 'type': 'CosineAnnealingLR',\n",
" 'T_max': T_max,\n",
" 'eta_min': 1e-5,\n",
" 'options': {\n",
" 'by_epoch': False,\n",
" 'warmup': {\n",
" 'type': 'LinearWarmup',\n",
" 'warmup_ratio': 0.1,\n",
" 'warmup_iters': 200\n",
" }\n",
" }\n",
" },\n",
" 'hooks': [\n",
" {'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1},\n",
" {'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL},\n",
" {'type': 'BestCkptSaverHook',\n",
" 'metric_key': 'acc',\n",
" 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1},\n",
" {'type': 'TextLoggerHook',\n",
" 'by_epoch': True, # Whether EpochBasedTrainer is used\n",
" 'interval': 5},\n",
" {'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5}\n",
" ]\n",
" },\n",
" 'evaluation': {\n",
" 'dataloader': {\n",
" 'batch_size_per_gpu': BATCH_SIZE,\n",
" 'workers_per_gpu': 1,\n",
" 'shuffle': False,\n",
" 'drop_last': False,\n",
" 'pin_memory': True\n",
" },\n",
" 'metrics': [\n",
" {'type': 'my_metric', 'vocab_size': tokenizer.vocab_size}\n",
" ]\n",
" }\n",
"})"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 微调"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-02 17:24:49,903 - modelscope - INFO - ==========================Training Config Start==========================\n",
"2023-07-02 17:24:49,904 - modelscope - INFO - {\n",
" \"framework\": \"pytorch\",\n",
" \"task\": \"text-generation\",\n",
" \"model\": {\n",
" \"type\": \"Baichuan-7B\"\n",
" },\n",
" \"pipeline\": {\n",
" \"type\": \"Baichuan-7B-text-generation-pipe\"\n",
" },\n",
" \"allow_remote\": true,\n",
" \"train\": {\n",
" \"hooks\": [\n",
" {\n",
" \"type\": \"TensorboardHook\",\n",
" \"by_epoch\": false,\n",
" \"interval\": 5\n",
" }\n",
" ],\n",
" \"dataloader\": {\n",
" \"batch_size_per_gpu\": 1,\n",
" \"workers_per_gpu\": 1,\n",
" \"shuffle\": true,\n",
" \"drop_last\": true,\n",
" \"pin_memory\": true\n",
" },\n",
" \"max_epochs\": 1,\n",
" \"work_dir\": \"/home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\",\n",
" \"optimizer\": {\n",
" \"type\": \"AdamW\",\n",
" \"lr\": 0.0001,\n",
" \"weight_decay\": 0.01,\n",
" \"options\": {\n",
" \"cumulative_iters\": 16,\n",
" \"grad_clip\": {\n",
" \"norm_type\": 2,\n",
" \"max_norm\": 2.0\n",
" }\n",
" }\n",
" },\n",
" \"lr_scheduler\": {\n",
" \"type\": \"CosineAnnealingLR\",\n",
" \"T_max\": 4953,\n",
" \"eta_min\": 1e-05,\n",
" \"options\": {\n",
" \"by_epoch\": false,\n",
" \"warmup\": {\n",
" \"type\": \"LinearWarmup\",\n",
" \"warmup_ratio\": 0.1,\n",
" \"warmup_iters\": 200\n",
" }\n",
" }\n",
" },\n",
" \"checkpoint\": {\n",
" \"period\": {\n",
" \"by_epoch\": false,\n",
" \"interval\": 200,\n",
" \"max_checkpoint_num\": 1\n",
" },\n",
" \"best\": {\n",
" \"metric_key\": \"acc\",\n",
" \"save_best\": true,\n",
" \"rule\": \"max\",\n",
" \"max_checkpoint_num\": 1\n",
" }\n",
" },\n",
" \"logging\": {\n",
" \"by_epoch\": true,\n",
" \"interval\": 5\n",
" }\n",
" },\n",
" \"evaluation\": {\n",
" \"dataloader\": {\n",
" \"batch_size_per_gpu\": 1,\n",
" \"workers_per_gpu\": 1,\n",
" \"shuffle\": false,\n",
" \"drop_last\": false,\n",
" \"pin_memory\": true\n",
" },\n",
" \"metrics\": [\n",
" {\n",
" \"type\": \"my_metric\",\n",
" \"vocab_size\": 64000\n",
" }\n",
" ],\n",
" \"period\": {\n",
" \"by_epoch\": false,\n",
" \"interval\": 200\n",
" }\n",
" }\n",
"}\n",
"2023-07-02 17:24:49,904 - modelscope - INFO - ===========================Training Config End===========================\n",
"2023-07-02 17:24:49,905 - modelscope - WARNING - ('OPTIMIZER', 'default', 'AdamW') not found in ast index file\n",
"2023-07-02 17:24:49,906 - modelscope - WARNING - ('LR_SCHEDULER', 'default', 'CosineAnnealingLR') not found in ast index file\n",
"2023-07-02 17:24:49,907 - modelscope - INFO - Stage: before_run:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: before_train_epoch:\n",
" (LOW ) LrSchedulerHook \n",
" -------------------- \n",
"Stage: before_train_iter:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" -------------------- \n",
"Stage: after_train_iter:\n",
" (ABOVE_NORMAL) OptimizerHook \n",
" (NORMAL ) EvaluationHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_train_epoch:\n",
" (NORMAL ) EvaluationHook \n",
" (LOW ) LrSchedulerHook \n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_val_epoch:\n",
" (VERY_LOW ) TextLoggerHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"Stage: after_run:\n",
" (LOW ) BestCkptSaverHook \n",
" (LOW ) CheckpointHook \n",
" (VERY_LOW ) TensorboardHook \n",
" -------------------- \n",
"2023-07-02 17:24:49,913 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
"2023-07-02 17:24:49,916 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
"2023-07-02 17:24:49,917 - modelscope - INFO - Text logs will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449\n",
"2023-07-02 17:24:49,917 - modelscope - INFO - tensorboard files will be saved to /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/tensorboard_output\n",
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...\n",
"2023-07-02 17:24:55,315 - modelscope - INFO - epoch [1][5/4953]\tlr: 1.000e-05, memory: 7084, loss: 5.2094\n",
"2023-07-02 17:24:59,926 - modelscope - INFO - epoch [1][10/4953]\tlr: 1.000e-05, memory: 7084, loss: 1.9516\n",
"2023-07-02 17:25:05,112 - modelscope - INFO - epoch [1][15/4953]\tlr: 1.000e-05, memory: 7504, loss: 1.8344\n",
"2023-07-02 17:25:13,131 - modelscope - INFO - epoch [1][20/4953]\tlr: 1.225e-05, memory: 8075, loss: 3.3937\n",
"2023-07-02 17:25:19,098 - modelscope - INFO - epoch [1][25/4953]\tlr: 1.450e-05, memory: 8102, loss: 1.8047\n",
"2023-07-02 17:25:25,763 - modelscope - INFO - epoch [1][30/4953]\tlr: 1.675e-05, memory: 8102, loss: 1.5594\n",
"2023-07-02 17:25:33,888 - modelscope - INFO - epoch [1][35/4953]\tlr: 1.900e-05, memory: 8293, loss: 1.5852\n",
"2023-07-02 17:25:39,548 - modelscope - INFO - epoch [1][40/4953]\tlr: 2.125e-05, memory: 8293, loss: 1.7828\n",
"2023-07-02 17:25:44,599 - modelscope - INFO - epoch [1][45/4953]\tlr: 2.350e-05, memory: 8293, loss: 5.5922\n",
"2023-07-02 17:25:49,692 - modelscope - INFO - epoch [1][50/4953]\tlr: 2.575e-05, memory: 8293, loss: 2.6641\n",
"2023-07-02 17:25:56,104 - modelscope - INFO - epoch [1][55/4953]\tlr: 2.800e-05, memory: 8742, loss: 2.2344\n",
"2023-07-02 17:26:04,765 - modelscope - INFO - epoch [1][60/4953]\tlr: 3.025e-05, memory: 8742, loss: 1.7320\n",
"2023-07-02 17:26:10,288 - modelscope - INFO - epoch [1][65/4953]\tlr: 3.250e-05, memory: 8742, loss: 5.0578\n",
"2023-07-02 17:26:14,998 - modelscope - INFO - epoch [1][70/4953]\tlr: 3.475e-05, memory: 8742, loss: 4.0109\n",
"2023-07-02 17:26:21,600 - modelscope - INFO - epoch [1][75/4953]\tlr: 3.700e-05, memory: 8742, loss: 1.7266\n",
"2023-07-02 17:26:26,920 - modelscope - INFO - epoch [1][80/4953]\tlr: 3.925e-05, memory: 8742, loss: 2.9578\n",
"2023-07-02 17:26:32,447 - modelscope - INFO - epoch [1][85/4953]\tlr: 4.150e-05, memory: 8742, loss: 5.8422\n",
"2023-07-02 17:26:38,768 - modelscope - INFO - epoch [1][90/4953]\tlr: 4.375e-05, memory: 8742, loss: 1.8719\n",
"2023-07-02 17:26:45,955 - modelscope - INFO - epoch [1][95/4953]\tlr: 4.600e-05, memory: 8742, loss: 1.4359\n",
"2023-07-02 17:26:50,324 - modelscope - INFO - epoch [1][100/4953]\tlr: 4.825e-05, memory: 8742, loss: 5.6125\n",
"2023-07-02 17:26:58,123 - modelscope - INFO - epoch [1][105/4953]\tlr: 5.050e-05, memory: 8742, loss: 2.9656\n",
"2023-07-02 17:27:04,523 - modelscope - INFO - epoch [1][110/4953]\tlr: 5.275e-05, memory: 8742, loss: 1.7484\n",
"2023-07-02 17:27:09,550 - modelscope - INFO - epoch [1][115/4953]\tlr: 5.500e-05, memory: 8742, loss: 2.7133\n",
"2023-07-02 17:27:17,037 - modelscope - INFO - epoch [1][120/4953]\tlr: 5.725e-05, memory: 8742, loss: 1.9953\n",
"2023-07-02 17:27:22,364 - modelscope - INFO - epoch [1][125/4953]\tlr: 5.950e-05, memory: 8742, loss: 4.4578\n",
"2023-07-02 17:27:26,915 - modelscope - INFO - epoch [1][130/4953]\tlr: 6.175e-05, memory: 8742, loss: 4.4344\n",
"2023-07-02 17:27:34,586 - modelscope - INFO - epoch [1][135/4953]\tlr: 6.400e-05, memory: 8742, loss: 1.6328\n",
"2023-07-02 17:27:41,580 - modelscope - INFO - epoch [1][140/4953]\tlr: 6.625e-05, memory: 8742, loss: 3.9422\n",
"2023-07-02 17:27:47,073 - modelscope - INFO - epoch [1][145/4953]\tlr: 6.850e-05, memory: 8742, loss: 2.0562\n",
"2023-07-02 17:27:53,069 - modelscope - INFO - epoch [1][150/4953]\tlr: 7.075e-05, memory: 8742, loss: 1.8477\n",
"2023-07-02 17:27:58,364 - modelscope - INFO - epoch [1][155/4953]\tlr: 7.300e-05, memory: 8742, loss: 4.5445\n",
"2023-07-02 17:28:05,747 - modelscope - INFO - epoch [1][160/4953]\tlr: 7.525e-05, memory: 8742, loss: 4.0109\n",
"2023-07-02 17:28:12,108 - modelscope - INFO - epoch [1][165/4953]\tlr: 7.750e-05, memory: 8742, loss: 2.0578\n",
"2023-07-02 17:28:17,145 - modelscope - INFO - epoch [1][170/4953]\tlr: 7.975e-05, memory: 8742, loss: 1.9109\n",
"2023-07-02 17:28:23,027 - modelscope - INFO - epoch [1][175/4953]\tlr: 8.200e-05, memory: 8742, loss: 3.2410\n",
"2023-07-02 17:28:27,778 - modelscope - INFO - epoch [1][180/4953]\tlr: 8.425e-05, memory: 8742, loss: 2.9000\n",
"2023-07-02 17:28:34,508 - modelscope - INFO - epoch [1][185/4953]\tlr: 8.650e-05, memory: 8742, loss: 1.6062\n",
"2023-07-02 17:28:40,560 - modelscope - INFO - epoch [1][190/4953]\tlr: 8.875e-05, memory: 8742, loss: 1.5594\n",
"2023-07-02 17:28:46,479 - modelscope - INFO - epoch [1][195/4953]\tlr: 9.100e-05, memory: 8742, loss: 1.9875\n",
"2023-07-02 17:28:53,324 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 17:31:08,796 - modelscope - INFO - Saving checkpoint at 200 iter\n",
"2023-07-02 17:31:08,837 - modelscope - INFO - Saving checkpoint at 200 iter\n",
"2023-07-02 17:31:08,875 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8742, evaluation/acc: 0.7108, evaluation/loss: 2.4241, loss: 1.8062\n",
"2023-07-02 17:31:15,472 - modelscope - INFO - epoch [1][205/4953]\tlr: 9.550e-05, memory: 8742, loss: 1.9172\n",
"2023-07-02 17:31:21,195 - modelscope - INFO - epoch [1][210/4953]\tlr: 9.775e-05, memory: 8742, loss: 2.5586\n",
"2023-07-02 17:31:26,642 - modelscope - INFO - epoch [1][215/4953]\tlr: 1.000e-04, memory: 8742, loss: 2.1422\n",
"2023-07-02 17:31:32,941 - modelscope - INFO - epoch [1][220/4953]\tlr: 9.998e-05, memory: 8742, loss: 2.8609\n",
"2023-07-02 17:31:37,465 - modelscope - INFO - epoch [1][225/4953]\tlr: 9.996e-05, memory: 8742, loss: 1.9953\n",
"2023-07-02 17:31:42,190 - modelscope - INFO - epoch [1][230/4953]\tlr: 9.994e-05, memory: 8742, loss: 1.8422\n",
"2023-07-02 17:31:49,617 - modelscope - INFO - epoch [1][235/4953]\tlr: 9.992e-05, memory: 8742, loss: 1.8328\n",
"2023-07-02 17:31:54,582 - modelscope - INFO - epoch [1][240/4953]\tlr: 9.990e-05, memory: 8742, loss: 2.5031\n",
"2023-07-02 17:32:03,094 - modelscope - INFO - epoch [1][245/4953]\tlr: 9.988e-05, memory: 8742, loss: 3.4578\n",
"2023-07-02 17:32:09,110 - modelscope - INFO - epoch [1][250/4953]\tlr: 9.986e-05, memory: 8742, loss: 3.1359\n",
"2023-07-02 17:32:14,901 - modelscope - INFO - epoch [1][255/4953]\tlr: 9.984e-05, memory: 8742, loss: 3.4672\n",
"2023-07-02 17:32:21,012 - modelscope - INFO - epoch [1][260/4953]\tlr: 9.982e-05, memory: 8742, loss: 1.3734\n",
"2023-07-02 17:32:26,921 - modelscope - INFO - epoch [1][265/4953]\tlr: 9.979e-05, memory: 8742, loss: 1.7055\n",
"2023-07-02 17:32:33,958 - modelscope - INFO - epoch [1][270/4953]\tlr: 9.977e-05, memory: 8933, loss: 4.9609\n",
"2023-07-02 17:32:39,555 - modelscope - INFO - epoch [1][275/4953]\tlr: 9.975e-05, memory: 8933, loss: 3.0906\n",
"2023-07-02 17:32:45,339 - modelscope - INFO - epoch [1][280/4953]\tlr: 9.972e-05, memory: 8933, loss: 3.2016\n",
"2023-07-02 17:32:51,159 - modelscope - INFO - epoch [1][285/4953]\tlr: 9.970e-05, memory: 8933, loss: 3.4461\n",
"2023-07-02 17:32:57,166 - modelscope - INFO - epoch [1][290/4953]\tlr: 9.967e-05, memory: 8933, loss: 1.9609\n",
"2023-07-02 17:33:06,217 - modelscope - INFO - epoch [1][295/4953]\tlr: 9.965e-05, memory: 8933, loss: 1.9680\n",
"2023-07-02 17:33:12,393 - modelscope - INFO - epoch [1][300/4953]\tlr: 9.962e-05, memory: 8933, loss: 1.5422\n",
"2023-07-02 17:33:17,688 - modelscope - INFO - epoch [1][305/4953]\tlr: 9.960e-05, memory: 8933, loss: 2.6953\n",
"2023-07-02 17:33:21,863 - modelscope - INFO - epoch [1][310/4953]\tlr: 9.957e-05, memory: 8933, loss: 3.0094\n",
"2023-07-02 17:33:27,411 - modelscope - INFO - epoch [1][315/4953]\tlr: 9.954e-05, memory: 8933, loss: 1.9156\n",
"2023-07-02 17:33:33,136 - modelscope - INFO - epoch [1][320/4953]\tlr: 9.952e-05, memory: 8933, loss: 1.9672\n",
"2023-07-02 17:33:38,217 - modelscope - INFO - epoch [1][325/4953]\tlr: 9.949e-05, memory: 8933, loss: 4.3375\n",
"2023-07-02 17:33:44,012 - modelscope - INFO - epoch [1][330/4953]\tlr: 9.946e-05, memory: 8933, loss: 1.8797\n",
"2023-07-02 17:33:49,670 - modelscope - INFO - epoch [1][335/4953]\tlr: 9.943e-05, memory: 8933, loss: 3.0969\n",
"2023-07-02 17:33:55,428 - modelscope - INFO - epoch [1][340/4953]\tlr: 9.940e-05, memory: 8933, loss: 3.2477\n",
"2023-07-02 17:34:02,117 - modelscope - INFO - epoch [1][345/4953]\tlr: 9.937e-05, memory: 8933, loss: 2.7969\n",
"2023-07-02 17:34:08,037 - modelscope - INFO - epoch [1][350/4953]\tlr: 9.934e-05, memory: 8933, loss: 2.3578\n",
"2023-07-02 17:34:13,172 - modelscope - INFO - epoch [1][355/4953]\tlr: 9.931e-05, memory: 8933, loss: 2.0656\n",
"2023-07-02 17:34:19,283 - modelscope - INFO - epoch [1][360/4953]\tlr: 9.928e-05, memory: 8933, loss: 1.8438\n",
"2023-07-02 17:34:25,323 - modelscope - INFO - epoch [1][365/4953]\tlr: 9.925e-05, memory: 8933, loss: 2.1828\n",
"2023-07-02 17:34:31,845 - modelscope - INFO - epoch [1][370/4953]\tlr: 9.922e-05, memory: 8933, loss: 2.0234\n",
"2023-07-02 17:34:40,587 - modelscope - INFO - epoch [1][375/4953]\tlr: 9.919e-05, memory: 8933, loss: 2.3086\n",
"2023-07-02 17:34:45,650 - modelscope - INFO - epoch [1][380/4953]\tlr: 9.915e-05, memory: 8933, loss: 3.6734\n",
"2023-07-02 17:34:51,009 - modelscope - INFO - epoch [1][385/4953]\tlr: 9.912e-05, memory: 8933, loss: 1.3594\n",
"2023-07-02 17:34:57,229 - modelscope - INFO - epoch [1][390/4953]\tlr: 9.909e-05, memory: 8933, loss: 2.3117\n",
"2023-07-02 17:35:03,231 - modelscope - INFO - epoch [1][395/4953]\tlr: 9.905e-05, memory: 8933, loss: 1.4961\n",
"2023-07-02 17:35:08,373 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
"2023-07-02 17:37:23,763 - modelscope - INFO - Saving checkpoint at 400 iter\n",
"2023-07-02 17:37:23,803 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_200\n",
"2023-07-02 17:37:23,807 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8933, evaluation/acc: 0.7079, evaluation/loss: 2.1381, loss: 1.9438\n",
"2023-07-02 17:37:28,880 - modelscope - INFO - epoch [1][405/4953]\tlr: 9.898e-05, memory: 8933, loss: 3.1016\n",
"2023-07-02 17:37:35,463 - modelscope - INFO - epoch [1][410/4953]\tlr: 9.895e-05, memory: 8933, loss: 2.5531\n",
"2023-07-02 17:37:41,349 - modelscope - INFO - epoch [1][415/4953]\tlr: 9.891e-05, memory: 8933, loss: 2.2984\n",
"2023-07-02 17:37:47,522 - modelscope - INFO - epoch [1][420/4953]\tlr: 9.888e-05, memory: 8933, loss: 1.5930\n",
"2023-07-02 17:37:54,150 - modelscope - INFO - epoch [1][425/4953]\tlr: 9.884e-05, memory: 8933, loss: 2.2938\n",
"2023-07-02 17:37:59,915 - modelscope - INFO - epoch [1][430/4953]\tlr: 9.880e-05, memory: 8933, loss: 2.5562\n",
"2023-07-02 17:38:07,433 - modelscope - INFO - epoch [1][435/4953]\tlr: 9.877e-05, memory: 8933, loss: 1.5555\n",
"2023-07-02 17:38:14,761 - modelscope - INFO - epoch [1][440/4953]\tlr: 9.873e-05, memory: 8933, loss: 2.9109\n",
"2023-07-02 17:38:19,100 - modelscope - INFO - epoch [1][445/4953]\tlr: 9.869e-05, memory: 8933, loss: 1.6234\n",
"2023-07-02 17:38:24,534 - modelscope - INFO - epoch [1][450/4953]\tlr: 9.865e-05, memory: 8933, loss: 2.2734\n",
"2023-07-02 17:38:31,059 - modelscope - INFO - epoch [1][455/4953]\tlr: 9.861e-05, memory: 8933, loss: 1.3438\n",
"2023-07-02 17:38:37,366 - modelscope - INFO - epoch [1][460/4953]\tlr: 9.857e-05, memory: 8933, loss: 1.8469\n",
"2023-07-02 17:38:43,640 - modelscope - INFO - epoch [1][465/4953]\tlr: 9.853e-05, memory: 8933, loss: 1.7102\n",
"2023-07-02 17:38:48,102 - modelscope - INFO - epoch [1][470/4953]\tlr: 9.849e-05, memory: 8933, loss: 2.1500\n",
"2023-07-02 17:38:52,751 - modelscope - INFO - epoch [1][475/4953]\tlr: 9.845e-05, memory: 8933, loss: 2.4086\n",
"2023-07-02 17:38:59,938 - modelscope - INFO - epoch [1][480/4953]\tlr: 9.841e-05, memory: 8933, loss: 1.1828\n",
"2023-07-02 17:39:06,061 - modelscope - INFO - epoch [1][485/4953]\tlr: 9.837e-05, memory: 8933, loss: 1.0625\n",
"2023-07-02 17:39:13,230 - modelscope - INFO - epoch [1][490/4953]\tlr: 9.832e-05, memory: 8933, loss: 1.5750\n",
"2023-07-02 17:39:19,107 - modelscope - INFO - epoch [1][495/4953]\tlr: 9.828e-05, memory: 8933, loss: 1.9844\n",
"2023-07-02 17:39:27,177 - modelscope - INFO - epoch [1][500/4953]\tlr: 9.824e-05, memory: 8933, loss: 1.7211\n",
"2023-07-02 17:39:31,312 - modelscope - INFO - epoch [1][505/4953]\tlr: 9.819e-05, memory: 8933, loss: 2.9953\n",
"2023-07-02 17:39:37,871 - modelscope - INFO - epoch [1][510/4953]\tlr: 9.815e-05, memory: 8933, loss: 1.7234\n",
"2023-07-02 17:39:42,983 - modelscope - INFO - epoch [1][515/4953]\tlr: 9.811e-05, memory: 8933, loss: 3.3328\n",
"2023-07-02 17:39:50,299 - modelscope - INFO - epoch [1][520/4953]\tlr: 9.806e-05, memory: 8933, loss: 1.1523\n",
"2023-07-02 17:39:57,449 - modelscope - INFO - epoch [1][525/4953]\tlr: 9.802e-05, memory: 8933, loss: 2.2969\n",
"2023-07-02 17:40:03,936 - modelscope - INFO - epoch [1][530/4953]\tlr: 9.797e-05, memory: 8933, loss: 2.0359\n",
"2023-07-02 17:40:10,017 - modelscope - INFO - epoch [1][535/4953]\tlr: 9.792e-05, memory: 8933, loss: 2.2484\n",
"2023-07-02 17:40:15,110 - modelscope - INFO - epoch [1][540/4953]\tlr: 9.788e-05, memory: 8933, loss: 2.5000\n",
"2023-07-02 17:40:22,837 - modelscope - INFO - epoch [1][545/4953]\tlr: 9.783e-05, memory: 8933, loss: 1.6344\n",
"2023-07-02 17:40:27,326 - modelscope - INFO - epoch [1][550/4953]\tlr: 9.778e-05, memory: 8933, loss: 1.9516\n",
"2023-07-02 17:40:32,836 - modelscope - INFO - epoch [1][555/4953]\tlr: 9.774e-05, memory: 8933, loss: 2.7078\n",
"2023-07-02 17:40:38,900 - modelscope - INFO - epoch [1][560/4953]\tlr: 9.769e-05, memory: 8933, loss: 2.9023\n",
"2023-07-02 17:40:44,092 - modelscope - INFO - epoch [1][565/4953]\tlr: 9.764e-05, memory: 8933, loss: 3.7687\n",
"2023-07-02 17:40:51,182 - modelscope - INFO - epoch [1][570/4953]\tlr: 9.759e-05, memory: 8933, loss: 2.8531\n",
"2023-07-02 17:40:56,580 - modelscope - INFO - epoch [1][575/4953]\tlr: 9.754e-05, memory: 8933, loss: 1.8938\n",
"2023-07-02 17:41:04,432 - modelscope - INFO - epoch [1][580/4953]\tlr: 9.749e-05, memory: 8933, loss: 1.4187\n",
"2023-07-02 17:41:11,299 - modelscope - INFO - epoch [1][585/4953]\tlr: 9.744e-05, memory: 8933, loss: 2.2406\n",
"2023-07-02 17:41:17,405 - modelscope - INFO - epoch [1][590/4953]\tlr: 9.739e-05, memory: 8933, loss: 3.2250\n",
"2023-07-02 17:41:23,093 - modelscope - INFO - epoch [1][595/4953]\tlr: 9.734e-05, memory: 8933, loss: 1.5625\n",
"2023-07-02 17:41:29,552 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
"2023-07-02 17:43:44,919 - modelscope - INFO - Saving checkpoint at 600 iter\n",
"2023-07-02 17:43:44,959 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter200_acc0.7107985615730286\n",
"2023-07-02 17:43:44,963 - modelscope - INFO - Saving checkpoint at 600 iter\n",
"2023-07-02 17:43:45,002 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_400\n",
"2023-07-02 17:43:45,006 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8933, evaluation/acc: 0.7199, evaluation/loss: 1.9766, loss: 1.2516\n",
"2023-07-02 17:43:50,488 - modelscope - INFO - epoch [1][605/4953]\tlr: 9.723e-05, memory: 8933, loss: 1.8469\n",
"2023-07-02 17:43:56,664 - modelscope - INFO - epoch [1][610/4953]\tlr: 9.718e-05, memory: 8933, loss: 1.5445\n",
"2023-07-02 17:44:02,529 - modelscope - INFO - epoch [1][615/4953]\tlr: 9.713e-05, memory: 8933, loss: 1.8422\n",
"2023-07-02 17:44:07,376 - modelscope - INFO - epoch [1][620/4953]\tlr: 9.707e-05, memory: 8933, loss: 2.4242\n",
"2023-07-02 17:44:12,991 - modelscope - INFO - epoch [1][625/4953]\tlr: 9.702e-05, memory: 8933, loss: 1.8070\n",
"2023-07-02 17:44:17,716 - modelscope - INFO - epoch [1][630/4953]\tlr: 9.697e-05, memory: 8933, loss: 2.0000\n",
"2023-07-02 17:44:22,023 - modelscope - INFO - epoch [1][635/4953]\tlr: 9.691e-05, memory: 8933, loss: 1.3898\n",
"2023-07-02 17:44:27,160 - modelscope - INFO - epoch [1][640/4953]\tlr: 9.686e-05, memory: 8933, loss: 1.6227\n",
"2023-07-02 17:44:33,519 - modelscope - INFO - epoch [1][645/4953]\tlr: 9.680e-05, memory: 8933, loss: 1.6672\n",
"2023-07-02 17:44:40,193 - modelscope - INFO - epoch [1][650/4953]\tlr: 9.674e-05, memory: 8933, loss: 1.4438\n",
"2023-07-02 17:44:44,906 - modelscope - INFO - epoch [1][655/4953]\tlr: 9.669e-05, memory: 8933, loss: 1.6648\n",
"2023-07-02 17:44:49,519 - modelscope - INFO - epoch [1][660/4953]\tlr: 9.663e-05, memory: 8933, loss: 1.2945\n",
"2023-07-02 17:44:55,845 - modelscope - INFO - epoch [1][665/4953]\tlr: 9.657e-05, memory: 8933, loss: 1.5773\n",
"2023-07-02 17:45:02,184 - modelscope - INFO - epoch [1][670/4953]\tlr: 9.652e-05, memory: 8933, loss: 1.8625\n",
"2023-07-02 17:45:05,554 - modelscope - INFO - epoch [1][675/4953]\tlr: 9.646e-05, memory: 8933, loss: 1.7039\n",
"2023-07-02 17:45:10,948 - modelscope - INFO - epoch [1][680/4953]\tlr: 9.640e-05, memory: 8933, loss: 2.0211\n",
"2023-07-02 17:45:15,605 - modelscope - INFO - epoch [1][685/4953]\tlr: 9.634e-05, memory: 8933, loss: 1.5969\n",
"2023-07-02 17:45:19,449 - modelscope - INFO - epoch [1][690/4953]\tlr: 9.628e-05, memory: 8933, loss: 1.7523\n",
"2023-07-02 17:45:26,684 - modelscope - INFO - epoch [1][695/4953]\tlr: 9.622e-05, memory: 8933, loss: 1.0891\n",
"2023-07-02 17:45:32,244 - modelscope - INFO - epoch [1][700/4953]\tlr: 9.616e-05, memory: 8933, loss: 1.9469\n",
"2023-07-02 17:45:37,894 - modelscope - INFO - epoch [1][705/4953]\tlr: 9.610e-05, memory: 8933, loss: 2.0938\n",
"2023-07-02 17:45:43,345 - modelscope - INFO - epoch [1][710/4953]\tlr: 9.604e-05, memory: 8933, loss: 2.7961\n",
"2023-07-02 17:45:49,260 - modelscope - INFO - epoch [1][715/4953]\tlr: 9.598e-05, memory: 8933, loss: 1.4719\n",
"2023-07-02 17:45:56,740 - modelscope - INFO - epoch [1][720/4953]\tlr: 9.592e-05, memory: 8992, loss: 2.2742\n",
"2023-07-02 17:46:00,368 - modelscope - INFO - epoch [1][725/4953]\tlr: 9.585e-05, memory: 8992, loss: 2.5391\n",
"2023-07-02 17:46:06,793 - modelscope - INFO - epoch [1][730/4953]\tlr: 9.579e-05, memory: 8992, loss: 1.0074\n",
"2023-07-02 17:46:13,010 - modelscope - INFO - epoch [1][735/4953]\tlr: 9.573e-05, memory: 8992, loss: 1.9289\n",
"2023-07-02 17:46:19,044 - modelscope - INFO - epoch [1][740/4953]\tlr: 9.567e-05, memory: 8992, loss: 1.7352\n",
"2023-07-02 17:46:26,858 - modelscope - INFO - epoch [1][745/4953]\tlr: 9.560e-05, memory: 8992, loss: 1.6711\n",
"2023-07-02 17:46:32,975 - modelscope - INFO - epoch [1][750/4953]\tlr: 9.554e-05, memory: 8992, loss: 2.0008\n",
"2023-07-02 17:46:41,458 - modelscope - INFO - epoch [1][755/4953]\tlr: 9.547e-05, memory: 8992, loss: 1.4602\n",
"2023-07-02 17:46:45,793 - modelscope - INFO - epoch [1][760/4953]\tlr: 9.541e-05, memory: 8992, loss: 3.6859\n",
"2023-07-02 17:46:50,447 - modelscope - INFO - epoch [1][765/4953]\tlr: 9.534e-05, memory: 8992, loss: 2.0977\n",
"2023-07-02 17:46:56,543 - modelscope - INFO - epoch [1][770/4953]\tlr: 9.528e-05, memory: 8992, loss: 1.6078\n",
"2023-07-02 17:47:02,551 - modelscope - INFO - epoch [1][775/4953]\tlr: 9.521e-05, memory: 8992, loss: 2.8766\n",
"2023-07-02 17:47:09,599 - modelscope - INFO - epoch [1][780/4953]\tlr: 9.514e-05, memory: 8992, loss: 2.9023\n",
"2023-07-02 17:47:15,456 - modelscope - INFO - epoch [1][785/4953]\tlr: 9.508e-05, memory: 8992, loss: 1.2570\n",
"2023-07-02 17:47:22,689 - modelscope - INFO - epoch [1][790/4953]\tlr: 9.501e-05, memory: 8992, loss: 1.7406\n",
"2023-07-02 17:47:28,263 - modelscope - INFO - epoch [1][795/4953]\tlr: 9.494e-05, memory: 8992, loss: 1.9820\n",
"2023-07-02 17:47:34,260 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
"2023-07-02 17:49:50,358 - modelscope - INFO - Saving checkpoint at 800 iter\n",
"2023-07-02 17:49:50,399 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter600_acc0.7198567390441895\n",
"2023-07-02 17:49:50,403 - modelscope - INFO - Saving checkpoint at 800 iter\n",
"2023-07-02 17:49:50,442 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_600\n",
"2023-07-02 17:49:50,447 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7412, evaluation/loss: 1.8238, loss: 1.3484\n",
"2023-07-02 17:49:56,027 - modelscope - INFO - epoch [1][805/4953]\tlr: 9.481e-05, memory: 8992, loss: 1.9234\n",
"2023-07-02 17:50:02,709 - modelscope - INFO - epoch [1][810/4953]\tlr: 9.474e-05, memory: 8992, loss: 1.3625\n",
"2023-07-02 17:50:05,927 - modelscope - INFO - epoch [1][815/4953]\tlr: 9.467e-05, memory: 8992, loss: 3.0219\n",
"2023-07-02 17:50:11,744 - modelscope - INFO - epoch [1][820/4953]\tlr: 9.460e-05, memory: 8992, loss: 1.4125\n",
"2023-07-02 17:50:17,173 - modelscope - INFO - epoch [1][825/4953]\tlr: 9.453e-05, memory: 8992, loss: 2.7422\n",
"2023-07-02 17:50:20,860 - modelscope - INFO - epoch [1][830/4953]\tlr: 9.446e-05, memory: 8992, loss: 2.2609\n",
"2023-07-02 17:50:26,716 - modelscope - INFO - epoch [1][835/4953]\tlr: 9.439e-05, memory: 8992, loss: 2.0391\n",
"2023-07-02 17:50:33,433 - modelscope - INFO - epoch [1][840/4953]\tlr: 9.431e-05, memory: 8992, loss: 1.2227\n",
"2023-07-02 17:50:38,310 - modelscope - INFO - epoch [1][845/4953]\tlr: 9.424e-05, memory: 8992, loss: 2.3312\n",
"2023-07-02 17:50:42,956 - modelscope - INFO - epoch [1][850/4953]\tlr: 9.417e-05, memory: 8992, loss: 1.8562\n",
"2023-07-02 17:50:48,973 - modelscope - INFO - epoch [1][855/4953]\tlr: 9.410e-05, memory: 8992, loss: 1.5039\n",
"2023-07-02 17:50:52,835 - modelscope - INFO - epoch [1][860/4953]\tlr: 9.402e-05, memory: 8992, loss: 2.6664\n",
"2023-07-02 17:50:59,665 - modelscope - INFO - epoch [1][865/4953]\tlr: 9.395e-05, memory: 8992, loss: 1.1352\n",
"2023-07-02 17:51:05,311 - modelscope - INFO - epoch [1][870/4953]\tlr: 9.388e-05, memory: 8992, loss: 0.9805\n",
"2023-07-02 17:51:10,329 - modelscope - INFO - epoch [1][875/4953]\tlr: 9.380e-05, memory: 8992, loss: 1.9438\n",
"2023-07-02 17:51:15,416 - modelscope - INFO - epoch [1][880/4953]\tlr: 9.373e-05, memory: 8992, loss: 1.5938\n",
"2023-07-02 17:51:18,285 - modelscope - INFO - epoch [1][885/4953]\tlr: 9.365e-05, memory: 8992, loss: 3.1656\n",
"2023-07-02 17:51:23,293 - modelscope - INFO - epoch [1][890/4953]\tlr: 9.358e-05, memory: 8992, loss: 1.3336\n",
"2023-07-02 17:51:29,054 - modelscope - INFO - epoch [1][895/4953]\tlr: 9.350e-05, memory: 8992, loss: 1.9094\n",
"2023-07-02 17:51:34,572 - modelscope - INFO - epoch [1][900/4953]\tlr: 9.343e-05, memory: 8992, loss: 2.2406\n",
"2023-07-02 17:51:40,191 - modelscope - INFO - epoch [1][905/4953]\tlr: 9.335e-05, memory: 8992, loss: 1.1078\n",
"2023-07-02 17:51:49,310 - modelscope - INFO - epoch [1][910/4953]\tlr: 9.327e-05, memory: 8992, loss: 1.4352\n",
"2023-07-02 17:51:53,688 - modelscope - INFO - epoch [1][915/4953]\tlr: 9.320e-05, memory: 8992, loss: 2.3406\n",
"2023-07-02 17:51:58,710 - modelscope - INFO - epoch [1][920/4953]\tlr: 9.312e-05, memory: 8992, loss: 1.6012\n",
"2023-07-02 17:52:04,686 - modelscope - INFO - epoch [1][925/4953]\tlr: 9.304e-05, memory: 8992, loss: 1.7086\n",
"2023-07-02 17:52:12,123 - modelscope - INFO - epoch [1][930/4953]\tlr: 9.296e-05, memory: 8992, loss: 1.3492\n",
"2023-07-02 17:52:15,935 - modelscope - INFO - epoch [1][935/4953]\tlr: 9.288e-05, memory: 8992, loss: 1.4781\n",
"2023-07-02 17:52:20,994 - modelscope - INFO - epoch [1][940/4953]\tlr: 9.280e-05, memory: 8992, loss: 2.1047\n",
"2023-07-02 17:52:28,615 - modelscope - INFO - epoch [1][945/4953]\tlr: 9.272e-05, memory: 8992, loss: 1.2547\n",
"2023-07-02 17:52:34,278 - modelscope - INFO - epoch [1][950/4953]\tlr: 9.264e-05, memory: 8992, loss: 1.7332\n",
"2023-07-02 17:52:40,908 - modelscope - INFO - epoch [1][955/4953]\tlr: 9.256e-05, memory: 8992, loss: 1.2336\n",
"2023-07-02 17:52:45,957 - modelscope - INFO - epoch [1][960/4953]\tlr: 9.248e-05, memory: 8992, loss: 1.3078\n",
"2023-07-02 17:52:51,185 - modelscope - INFO - epoch [1][965/4953]\tlr: 9.240e-05, memory: 8992, loss: 2.4461\n",
"2023-07-02 17:52:56,088 - modelscope - INFO - epoch [1][970/4953]\tlr: 9.232e-05, memory: 8992, loss: 2.0934\n",
"2023-07-02 17:53:00,822 - modelscope - INFO - epoch [1][975/4953]\tlr: 9.224e-05, memory: 8992, loss: 1.5676\n",
"2023-07-02 17:53:04,695 - modelscope - INFO - epoch [1][980/4953]\tlr: 9.216e-05, memory: 8992, loss: 2.7031\n",
"2023-07-02 17:53:09,760 - modelscope - INFO - epoch [1][985/4953]\tlr: 9.207e-05, memory: 8992, loss: 1.9406\n",
"2023-07-02 17:53:14,950 - modelscope - INFO - epoch [1][990/4953]\tlr: 9.199e-05, memory: 8992, loss: 1.9484\n",
"2023-07-02 17:53:20,534 - modelscope - INFO - epoch [1][995/4953]\tlr: 9.191e-05, memory: 8992, loss: 3.2953\n",
"2023-07-02 17:53:25,342 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
"2023-07-02 17:55:41,348 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
"2023-07-02 17:55:41,389 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter800_acc0.7412243485450745\n",
"2023-07-02 17:55:41,393 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
"2023-07-02 17:55:41,431 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_800\n",
"2023-07-02 17:55:41,435 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7551, evaluation/loss: 1.6418, loss: 2.1023\n",
"2023-07-02 17:55:48,321 - modelscope - INFO - epoch [1][1005/4953]\tlr: 9.174e-05, memory: 8992, loss: 0.9020\n",
"2023-07-02 17:55:52,978 - modelscope - INFO - epoch [1][1010/4953]\tlr: 9.166e-05, memory: 8992, loss: 2.8094\n",
"2023-07-02 17:55:59,951 - modelscope - INFO - epoch [1][1015/4953]\tlr: 9.157e-05, memory: 8992, loss: 1.5145\n",
"2023-07-02 17:56:06,752 - modelscope - INFO - epoch [1][1020/4953]\tlr: 9.149e-05, memory: 8992, loss: 1.2547\n",
"2023-07-02 17:56:13,123 - modelscope - INFO - epoch [1][1025/4953]\tlr: 9.140e-05, memory: 8992, loss: 1.5836\n",
"2023-07-02 17:56:18,535 - modelscope - INFO - epoch [1][1030/4953]\tlr: 9.132e-05, memory: 8992, loss: 1.5500\n",
"2023-07-02 17:56:23,898 - modelscope - INFO - epoch [1][1035/4953]\tlr: 9.123e-05, memory: 8992, loss: 1.1477\n",
"2023-07-02 17:56:29,262 - modelscope - INFO - epoch [1][1040/4953]\tlr: 9.114e-05, memory: 8992, loss: 1.8488\n",
"2023-07-02 17:56:36,281 - modelscope - INFO - epoch [1][1045/4953]\tlr: 9.106e-05, memory: 8992, loss: 1.7969\n",
"2023-07-02 17:56:42,786 - modelscope - INFO - epoch [1][1050/4953]\tlr: 9.097e-05, memory: 8992, loss: 1.0703\n",
"2023-07-02 17:56:48,367 - modelscope - INFO - epoch [1][1055/4953]\tlr: 9.088e-05, memory: 8992, loss: 1.5227\n",
"2023-07-02 17:56:53,185 - modelscope - INFO - epoch [1][1060/4953]\tlr: 9.079e-05, memory: 8992, loss: 2.5859\n",
"2023-07-02 17:56:59,040 - modelscope - INFO - epoch [1][1065/4953]\tlr: 9.070e-05, memory: 8992, loss: 1.4641\n",
"2023-07-02 17:57:05,006 - modelscope - INFO - epoch [1][1070/4953]\tlr: 9.062e-05, memory: 8992, loss: 0.9602\n",
"2023-07-02 17:57:08,833 - modelscope - INFO - epoch [1][1075/4953]\tlr: 9.053e-05, memory: 8992, loss: 2.7281\n",
"2023-07-02 17:57:15,081 - modelscope - INFO - epoch [1][1080/4953]\tlr: 9.044e-05, memory: 8992, loss: 0.8438\n",
"2023-07-02 17:57:19,054 - modelscope - INFO - epoch [1][1085/4953]\tlr: 9.035e-05, memory: 8992, loss: 2.0336\n",
"2023-07-02 17:57:27,789 - modelscope - INFO - epoch [1][1090/4953]\tlr: 9.026e-05, memory: 8992, loss: 1.0059\n",
"2023-07-02 17:57:32,658 - modelscope - INFO - epoch [1][1095/4953]\tlr: 9.017e-05, memory: 8992, loss: 1.4187\n",
"2023-07-02 17:57:37,809 - modelscope - INFO - epoch [1][1100/4953]\tlr: 9.008e-05, memory: 8992, loss: 1.8813\n",
"2023-07-02 17:57:44,029 - modelscope - INFO - epoch [1][1105/4953]\tlr: 8.999e-05, memory: 8992, loss: 1.2219\n",
"2023-07-02 17:57:49,772 - modelscope - INFO - epoch [1][1110/4953]\tlr: 8.989e-05, memory: 8992, loss: 1.0527\n",
"2023-07-02 17:57:53,867 - modelscope - INFO - epoch [1][1115/4953]\tlr: 8.980e-05, memory: 8992, loss: 1.7289\n",
"2023-07-02 17:57:59,243 - modelscope - INFO - epoch [1][1120/4953]\tlr: 8.971e-05, memory: 8992, loss: 2.4305\n",
"2023-07-02 17:58:08,887 - modelscope - INFO - epoch [1][1125/4953]\tlr: 8.962e-05, memory: 8992, loss: 0.7469\n",
"2023-07-02 17:58:16,138 - modelscope - INFO - epoch [1][1130/4953]\tlr: 8.952e-05, memory: 8992, loss: 1.7727\n",
"2023-07-02 17:58:23,930 - modelscope - INFO - epoch [1][1135/4953]\tlr: 8.943e-05, memory: 8992, loss: 2.0129\n",
"2023-07-02 17:58:30,185 - modelscope - INFO - epoch [1][1140/4953]\tlr: 8.934e-05, memory: 8992, loss: 2.9025\n",
"2023-07-02 17:58:36,114 - modelscope - INFO - epoch [1][1145/4953]\tlr: 8.924e-05, memory: 8992, loss: 1.8898\n",
"2023-07-02 17:58:42,583 - modelscope - INFO - epoch [1][1150/4953]\tlr: 8.915e-05, memory: 8992, loss: 1.6789\n",
"2023-07-02 17:58:47,491 - modelscope - INFO - epoch [1][1155/4953]\tlr: 8.905e-05, memory: 8992, loss: 1.5578\n",
"2023-07-02 17:58:51,182 - modelscope - INFO - epoch [1][1160/4953]\tlr: 8.896e-05, memory: 8992, loss: 2.6266\n",
"2023-07-02 17:58:56,692 - modelscope - INFO - epoch [1][1165/4953]\tlr: 8.886e-05, memory: 8992, loss: 1.8508\n",
"2023-07-02 17:59:01,780 - modelscope - INFO - epoch [1][1170/4953]\tlr: 8.877e-05, memory: 8992, loss: 1.7000\n",
"2023-07-02 17:59:05,790 - modelscope - INFO - epoch [1][1175/4953]\tlr: 8.867e-05, memory: 8992, loss: 2.2281\n",
"2023-07-02 17:59:10,420 - modelscope - INFO - epoch [1][1180/4953]\tlr: 8.858e-05, memory: 8992, loss: 2.2180\n",
"2023-07-02 17:59:15,762 - modelscope - INFO - epoch [1][1185/4953]\tlr: 8.848e-05, memory: 8992, loss: 1.2668\n",
"2023-07-02 17:59:20,930 - modelscope - INFO - epoch [1][1190/4953]\tlr: 8.838e-05, memory: 8992, loss: 1.8664\n",
"2023-07-02 17:59:27,122 - modelscope - INFO - epoch [1][1195/4953]\tlr: 8.828e-05, memory: 8992, loss: 2.4109\n",
"2023-07-02 17:59:32,910 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:01:48,692 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
"2023-07-02 18:01:48,732 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1000_acc0.7551158666610718\n",
"2023-07-02 18:01:48,736 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
"2023-07-02 18:01:48,775 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1000\n",
"2023-07-02 18:01:48,780 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7694, evaluation/loss: 1.5234, loss: 1.7117\n",
"2023-07-02 18:01:56,354 - modelscope - INFO - epoch [1][1205/4953]\tlr: 8.809e-05, memory: 8992, loss: 1.2402\n",
"2023-07-02 18:02:00,660 - modelscope - INFO - epoch [1][1210/4953]\tlr: 8.799e-05, memory: 8992, loss: 1.9062\n",
"2023-07-02 18:02:04,421 - modelscope - INFO - epoch [1][1215/4953]\tlr: 8.789e-05, memory: 8992, loss: 1.4750\n",
"2023-07-02 18:02:10,614 - modelscope - INFO - epoch [1][1220/4953]\tlr: 8.779e-05, memory: 8992, loss: 1.0879\n",
"2023-07-02 18:02:16,579 - modelscope - INFO - epoch [1][1225/4953]\tlr: 8.769e-05, memory: 8992, loss: 1.9461\n",
"2023-07-02 18:02:23,602 - modelscope - INFO - epoch [1][1230/4953]\tlr: 8.759e-05, memory: 8992, loss: 2.3242\n",
"2023-07-02 18:02:31,155 - modelscope - INFO - epoch [1][1235/4953]\tlr: 8.749e-05, memory: 8992, loss: 1.9867\n",
"2023-07-02 18:02:36,373 - modelscope - INFO - epoch [1][1240/4953]\tlr: 8.739e-05, memory: 8992, loss: 2.1641\n",
"2023-07-02 18:02:41,792 - modelscope - INFO - epoch [1][1245/4953]\tlr: 8.729e-05, memory: 8992, loss: 1.9109\n",
"2023-07-02 18:02:49,746 - modelscope - INFO - epoch [1][1250/4953]\tlr: 8.719e-05, memory: 8992, loss: 0.7258\n",
"2023-07-02 18:02:54,809 - modelscope - INFO - epoch [1][1255/4953]\tlr: 8.709e-05, memory: 8992, loss: 1.7203\n",
"2023-07-02 18:03:02,266 - modelscope - INFO - epoch [1][1260/4953]\tlr: 8.699e-05, memory: 8992, loss: 1.3533\n",
"2023-07-02 18:03:10,570 - modelscope - INFO - epoch [1][1265/4953]\tlr: 8.689e-05, memory: 8992, loss: 1.6199\n",
"2023-07-02 18:03:17,332 - modelscope - INFO - epoch [1][1270/4953]\tlr: 8.679e-05, memory: 8992, loss: 1.4033\n",
"2023-07-02 18:03:24,075 - modelscope - INFO - epoch [1][1275/4953]\tlr: 8.668e-05, memory: 8992, loss: 1.3773\n",
"2023-07-02 18:03:31,046 - modelscope - INFO - epoch [1][1280/4953]\tlr: 8.658e-05, memory: 8992, loss: 1.3973\n",
"2023-07-02 18:03:37,326 - modelscope - INFO - epoch [1][1285/4953]\tlr: 8.648e-05, memory: 8992, loss: 1.6422\n",
"2023-07-02 18:03:42,789 - modelscope - INFO - epoch [1][1290/4953]\tlr: 8.637e-05, memory: 8992, loss: 1.8156\n",
"2023-07-02 18:03:49,191 - modelscope - INFO - epoch [1][1295/4953]\tlr: 8.627e-05, memory: 8992, loss: 0.8660\n",
"2023-07-02 18:03:57,916 - modelscope - INFO - epoch [1][1300/4953]\tlr: 8.617e-05, memory: 8992, loss: 1.4477\n",
"2023-07-02 18:04:04,809 - modelscope - INFO - epoch [1][1305/4953]\tlr: 8.606e-05, memory: 8992, loss: 0.7375\n",
"2023-07-02 18:04:12,169 - modelscope - INFO - epoch [1][1310/4953]\tlr: 8.596e-05, memory: 8992, loss: 0.4646\n",
"2023-07-02 18:04:17,928 - modelscope - INFO - epoch [1][1315/4953]\tlr: 8.585e-05, memory: 8992, loss: 1.6566\n",
"2023-07-02 18:04:26,868 - modelscope - INFO - epoch [1][1320/4953]\tlr: 8.575e-05, memory: 8992, loss: 1.0375\n",
"2023-07-02 18:04:32,785 - modelscope - INFO - epoch [1][1325/4953]\tlr: 8.564e-05, memory: 8992, loss: 1.1785\n",
"2023-07-02 18:04:36,876 - modelscope - INFO - epoch [1][1330/4953]\tlr: 8.553e-05, memory: 8992, loss: 2.0953\n",
"2023-07-02 18:04:43,149 - modelscope - INFO - epoch [1][1335/4953]\tlr: 8.543e-05, memory: 8992, loss: 1.4941\n",
"2023-07-02 18:04:48,128 - modelscope - INFO - epoch [1][1340/4953]\tlr: 8.532e-05, memory: 8992, loss: 2.3219\n",
"2023-07-02 18:04:54,519 - modelscope - INFO - epoch [1][1345/4953]\tlr: 8.521e-05, memory: 8992, loss: 1.7479\n",
"2023-07-02 18:05:00,734 - modelscope - INFO - epoch [1][1350/4953]\tlr: 8.511e-05, memory: 8992, loss: 2.5168\n",
"2023-07-02 18:05:07,571 - modelscope - INFO - epoch [1][1355/4953]\tlr: 8.500e-05, memory: 8992, loss: 1.5414\n",
"2023-07-02 18:05:13,130 - modelscope - INFO - epoch [1][1360/4953]\tlr: 8.489e-05, memory: 8992, loss: 1.8086\n",
"2023-07-02 18:05:22,837 - modelscope - INFO - epoch [1][1365/4953]\tlr: 8.478e-05, memory: 8992, loss: 1.1250\n",
"2023-07-02 18:05:28,381 - modelscope - INFO - epoch [1][1370/4953]\tlr: 8.468e-05, memory: 8992, loss: 1.2740\n",
"2023-07-02 18:05:34,762 - modelscope - INFO - epoch [1][1375/4953]\tlr: 8.457e-05, memory: 8992, loss: 1.6906\n",
"2023-07-02 18:05:40,998 - modelscope - INFO - epoch [1][1380/4953]\tlr: 8.446e-05, memory: 8992, loss: 2.1523\n",
"2023-07-02 18:05:48,330 - modelscope - INFO - epoch [1][1385/4953]\tlr: 8.435e-05, memory: 8992, loss: 0.6824\n",
"2023-07-02 18:05:52,136 - modelscope - INFO - epoch [1][1390/4953]\tlr: 8.424e-05, memory: 8992, loss: 1.8422\n",
"2023-07-02 18:05:58,132 - modelscope - INFO - epoch [1][1395/4953]\tlr: 8.413e-05, memory: 8992, loss: 0.8705\n",
"2023-07-02 18:06:04,317 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:08:20,133 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
"2023-07-02 18:08:20,173 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1200_acc0.7693551182746887\n",
"2023-07-02 18:08:20,177 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
"2023-07-02 18:08:20,216 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1200\n",
"2023-07-02 18:08:20,220 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 8992, evaluation/acc: 0.7789, evaluation/loss: 1.4656, loss: 1.8477\n",
"2023-07-02 18:08:25,847 - modelscope - INFO - epoch [1][1405/4953]\tlr: 8.391e-05, memory: 8992, loss: 1.5250\n",
"2023-07-02 18:08:32,815 - modelscope - INFO - epoch [1][1410/4953]\tlr: 8.380e-05, memory: 8992, loss: 1.2430\n",
"2023-07-02 18:08:38,362 - modelscope - INFO - epoch [1][1415/4953]\tlr: 8.369e-05, memory: 8992, loss: 1.4227\n",
"2023-07-02 18:08:43,312 - modelscope - INFO - epoch [1][1420/4953]\tlr: 8.358e-05, memory: 8992, loss: 1.3088\n",
"2023-07-02 18:08:50,596 - modelscope - INFO - epoch [1][1425/4953]\tlr: 8.346e-05, memory: 8992, loss: 1.0277\n",
"2023-07-02 18:08:55,317 - modelscope - INFO - epoch [1][1430/4953]\tlr: 8.335e-05, memory: 8992, loss: 2.0480\n",
"2023-07-02 18:08:58,994 - modelscope - INFO - epoch [1][1435/4953]\tlr: 8.324e-05, memory: 8992, loss: 3.0969\n",
"2023-07-02 18:09:04,894 - modelscope - INFO - epoch [1][1440/4953]\tlr: 8.313e-05, memory: 8992, loss: 0.7141\n",
"2023-07-02 18:09:10,621 - modelscope - INFO - epoch [1][1445/4953]\tlr: 8.301e-05, memory: 8992, loss: 1.7031\n",
"2023-07-02 18:09:15,960 - modelscope - INFO - epoch [1][1450/4953]\tlr: 8.290e-05, memory: 8992, loss: 1.5277\n",
"2023-07-02 18:09:21,781 - modelscope - INFO - epoch [1][1455/4953]\tlr: 8.279e-05, memory: 8992, loss: 1.7842\n",
"2023-07-02 18:09:29,051 - modelscope - INFO - epoch [1][1460/4953]\tlr: 8.267e-05, memory: 8992, loss: 2.1768\n",
"2023-07-02 18:09:33,405 - modelscope - INFO - epoch [1][1465/4953]\tlr: 8.256e-05, memory: 8992, loss: 1.9969\n",
"2023-07-02 18:09:38,454 - modelscope - INFO - epoch [1][1470/4953]\tlr: 8.245e-05, memory: 8992, loss: 1.6043\n",
"2023-07-02 18:09:44,266 - modelscope - INFO - epoch [1][1475/4953]\tlr: 8.233e-05, memory: 8992, loss: 0.7842\n",
"2023-07-02 18:09:49,575 - modelscope - INFO - epoch [1][1480/4953]\tlr: 8.222e-05, memory: 8992, loss: 1.6766\n",
"2023-07-02 18:09:56,773 - modelscope - INFO - epoch [1][1485/4953]\tlr: 8.210e-05, memory: 8992, loss: 1.1123\n",
"2023-07-02 18:10:05,054 - modelscope - INFO - epoch [1][1490/4953]\tlr: 8.199e-05, memory: 9058, loss: 1.3289\n",
"2023-07-02 18:10:10,678 - modelscope - INFO - epoch [1][1495/4953]\tlr: 8.187e-05, memory: 9058, loss: 1.6414\n",
"2023-07-02 18:10:16,694 - modelscope - INFO - epoch [1][1500/4953]\tlr: 8.176e-05, memory: 9058, loss: 0.8203\n",
"2023-07-02 18:10:24,675 - modelscope - INFO - epoch [1][1505/4953]\tlr: 8.164e-05, memory: 9058, loss: 0.8189\n",
"2023-07-02 18:10:30,053 - modelscope - INFO - epoch [1][1510/4953]\tlr: 8.152e-05, memory: 9058, loss: 1.1646\n",
"2023-07-02 18:10:36,537 - modelscope - INFO - epoch [1][1515/4953]\tlr: 8.141e-05, memory: 9058, loss: 1.1387\n",
"2023-07-02 18:10:42,304 - modelscope - INFO - epoch [1][1520/4953]\tlr: 8.129e-05, memory: 9058, loss: 1.4477\n",
"2023-07-02 18:10:46,424 - modelscope - INFO - epoch [1][1525/4953]\tlr: 8.117e-05, memory: 9058, loss: 3.0531\n",
"2023-07-02 18:10:51,264 - modelscope - INFO - epoch [1][1530/4953]\tlr: 8.106e-05, memory: 9058, loss: 2.3023\n",
"2023-07-02 18:10:59,103 - modelscope - INFO - epoch [1][1535/4953]\tlr: 8.094e-05, memory: 9058, loss: 0.6086\n",
"2023-07-02 18:11:04,295 - modelscope - INFO - epoch [1][1540/4953]\tlr: 8.082e-05, memory: 9058, loss: 1.3912\n",
"2023-07-02 18:11:09,436 - modelscope - INFO - epoch [1][1545/4953]\tlr: 8.070e-05, memory: 9058, loss: 2.1668\n",
"2023-07-02 18:11:16,921 - modelscope - INFO - epoch [1][1550/4953]\tlr: 8.058e-05, memory: 9058, loss: 0.4180\n",
"2023-07-02 18:11:22,852 - modelscope - INFO - epoch [1][1555/4953]\tlr: 8.047e-05, memory: 9058, loss: 1.4855\n",
"2023-07-02 18:11:27,748 - modelscope - INFO - epoch [1][1560/4953]\tlr: 8.035e-05, memory: 9058, loss: 2.0650\n",
"2023-07-02 18:11:30,906 - modelscope - INFO - epoch [1][1565/4953]\tlr: 8.023e-05, memory: 9058, loss: 2.8250\n",
"2023-07-02 18:11:38,069 - modelscope - INFO - epoch [1][1570/4953]\tlr: 8.011e-05, memory: 9058, loss: 1.6609\n",
"2023-07-02 18:11:44,626 - modelscope - INFO - epoch [1][1575/4953]\tlr: 7.999e-05, memory: 9058, loss: 1.0016\n",
"2023-07-02 18:11:49,164 - modelscope - INFO - epoch [1][1580/4953]\tlr: 7.987e-05, memory: 9058, loss: 2.2371\n",
"2023-07-02 18:11:53,217 - modelscope - INFO - epoch [1][1585/4953]\tlr: 7.975e-05, memory: 9058, loss: 2.7695\n",
"2023-07-02 18:11:59,930 - modelscope - INFO - epoch [1][1590/4953]\tlr: 7.963e-05, memory: 9058, loss: 2.2398\n",
"2023-07-02 18:12:04,671 - modelscope - INFO - epoch [1][1595/4953]\tlr: 7.951e-05, memory: 9058, loss: 0.7875\n",
"2023-07-02 18:12:10,417 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:14:26,308 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
"2023-07-02 18:14:26,349 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1400_acc0.7789175510406494\n",
"2023-07-02 18:14:26,353 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
"2023-07-02 18:14:26,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1400\n",
"2023-07-02 18:14:26,396 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.7892, evaluation/loss: 1.4188, loss: 2.1477\n",
"2023-07-02 18:14:31,893 - modelscope - INFO - epoch [1][1605/4953]\tlr: 7.927e-05, memory: 9058, loss: 0.7930\n",
"2023-07-02 18:14:37,157 - modelscope - INFO - epoch [1][1610/4953]\tlr: 7.914e-05, memory: 9058, loss: 1.6867\n",
"2023-07-02 18:14:41,163 - modelscope - INFO - epoch [1][1615/4953]\tlr: 7.902e-05, memory: 9058, loss: 1.3123\n",
"2023-07-02 18:14:46,222 - modelscope - INFO - epoch [1][1620/4953]\tlr: 7.890e-05, memory: 9058, loss: 1.9320\n",
"2023-07-02 18:14:50,200 - modelscope - INFO - epoch [1][1625/4953]\tlr: 7.878e-05, memory: 9058, loss: 2.3531\n",
"2023-07-02 18:14:55,640 - modelscope - INFO - epoch [1][1630/4953]\tlr: 7.866e-05, memory: 9058, loss: 2.1230\n",
"2023-07-02 18:15:00,591 - modelscope - INFO - epoch [1][1635/4953]\tlr: 7.853e-05, memory: 9058, loss: 1.2672\n",
"2023-07-02 18:15:06,311 - modelscope - INFO - epoch [1][1640/4953]\tlr: 7.841e-05, memory: 9058, loss: 1.8948\n",
"2023-07-02 18:15:12,067 - modelscope - INFO - epoch [1][1645/4953]\tlr: 7.829e-05, memory: 9058, loss: 1.9506\n",
"2023-07-02 18:15:18,834 - modelscope - INFO - epoch [1][1650/4953]\tlr: 7.817e-05, memory: 9058, loss: 0.8719\n",
"2023-07-02 18:15:24,490 - modelscope - INFO - epoch [1][1655/4953]\tlr: 7.804e-05, memory: 9058, loss: 0.7850\n",
"2023-07-02 18:15:30,533 - modelscope - INFO - epoch [1][1660/4953]\tlr: 7.792e-05, memory: 9058, loss: 1.0324\n",
"2023-07-02 18:15:39,715 - modelscope - INFO - epoch [1][1665/4953]\tlr: 7.779e-05, memory: 9058, loss: 0.8568\n",
"2023-07-02 18:15:46,536 - modelscope - INFO - epoch [1][1670/4953]\tlr: 7.767e-05, memory: 9058, loss: 1.5828\n",
"2023-07-02 18:15:50,976 - modelscope - INFO - epoch [1][1675/4953]\tlr: 7.755e-05, memory: 9058, loss: 1.5391\n",
"2023-07-02 18:15:56,272 - modelscope - INFO - epoch [1][1680/4953]\tlr: 7.742e-05, memory: 9058, loss: 1.6117\n",
"2023-07-02 18:16:04,187 - modelscope - INFO - epoch [1][1685/4953]\tlr: 7.730e-05, memory: 9058, loss: 0.4076\n",
"2023-07-02 18:16:08,882 - modelscope - INFO - epoch [1][1690/4953]\tlr: 7.717e-05, memory: 9058, loss: 1.3816\n",
"2023-07-02 18:16:16,150 - modelscope - INFO - epoch [1][1695/4953]\tlr: 7.705e-05, memory: 9058, loss: 1.9426\n",
"2023-07-02 18:16:20,599 - modelscope - INFO - epoch [1][1700/4953]\tlr: 7.692e-05, memory: 9058, loss: 2.4797\n",
"2023-07-02 18:16:26,001 - modelscope - INFO - epoch [1][1705/4953]\tlr: 7.679e-05, memory: 9058, loss: 1.3273\n",
"2023-07-02 18:16:32,374 - modelscope - INFO - epoch [1][1710/4953]\tlr: 7.667e-05, memory: 9058, loss: 0.9286\n",
"2023-07-02 18:16:39,243 - modelscope - INFO - epoch [1][1715/4953]\tlr: 7.654e-05, memory: 9058, loss: 1.3732\n",
"2023-07-02 18:16:44,919 - modelscope - INFO - epoch [1][1720/4953]\tlr: 7.642e-05, memory: 9058, loss: 1.2824\n",
"2023-07-02 18:16:47,647 - modelscope - INFO - epoch [1][1725/4953]\tlr: 7.629e-05, memory: 9058, loss: 2.0891\n",
"2023-07-02 18:16:53,984 - modelscope - INFO - epoch [1][1730/4953]\tlr: 7.616e-05, memory: 9058, loss: 0.5539\n",
"2023-07-02 18:16:58,439 - modelscope - INFO - epoch [1][1735/4953]\tlr: 7.604e-05, memory: 9058, loss: 1.4975\n",
"2023-07-02 18:17:03,726 - modelscope - INFO - epoch [1][1740/4953]\tlr: 7.591e-05, memory: 9058, loss: 1.6102\n",
"2023-07-02 18:17:08,657 - modelscope - INFO - epoch [1][1745/4953]\tlr: 7.578e-05, memory: 9058, loss: 1.6957\n",
"2023-07-02 18:17:13,371 - modelscope - INFO - epoch [1][1750/4953]\tlr: 7.565e-05, memory: 9058, loss: 1.5684\n",
"2023-07-02 18:17:17,513 - modelscope - INFO - epoch [1][1755/4953]\tlr: 7.553e-05, memory: 9058, loss: 2.9000\n",
"2023-07-02 18:17:24,347 - modelscope - INFO - epoch [1][1760/4953]\tlr: 7.540e-05, memory: 9058, loss: 1.5227\n",
"2023-07-02 18:17:28,183 - modelscope - INFO - epoch [1][1765/4953]\tlr: 7.527e-05, memory: 9058, loss: 2.3375\n",
"2023-07-02 18:17:35,427 - modelscope - INFO - epoch [1][1770/4953]\tlr: 7.514e-05, memory: 9058, loss: 1.0623\n",
"2023-07-02 18:17:39,708 - modelscope - INFO - epoch [1][1775/4953]\tlr: 7.501e-05, memory: 9058, loss: 1.5977\n",
"2023-07-02 18:17:45,757 - modelscope - INFO - epoch [1][1780/4953]\tlr: 7.488e-05, memory: 9058, loss: 1.0781\n",
"2023-07-02 18:17:49,525 - modelscope - INFO - epoch [1][1785/4953]\tlr: 7.475e-05, memory: 9058, loss: 1.6547\n",
"2023-07-02 18:17:55,072 - modelscope - INFO - epoch [1][1790/4953]\tlr: 7.463e-05, memory: 9058, loss: 1.4458\n",
"2023-07-02 18:18:01,439 - modelscope - INFO - epoch [1][1795/4953]\tlr: 7.450e-05, memory: 9058, loss: 1.0096\n",
"2023-07-02 18:18:06,478 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:20:22,335 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
"2023-07-02 18:20:22,375 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1600_acc0.7891753911972046\n",
"2023-07-02 18:20:22,379 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
"2023-07-02 18:20:22,417 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1600\n",
"2023-07-02 18:20:22,422 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.7967, evaluation/loss: 1.3701, loss: 0.9414\n",
"2023-07-02 18:20:28,163 - modelscope - INFO - epoch [1][1805/4953]\tlr: 7.424e-05, memory: 9058, loss: 1.7404\n",
"2023-07-02 18:20:32,265 - modelscope - INFO - epoch [1][1810/4953]\tlr: 7.411e-05, memory: 9058, loss: 1.5176\n",
"2023-07-02 18:20:38,772 - modelscope - INFO - epoch [1][1815/4953]\tlr: 7.398e-05, memory: 9058, loss: 0.9519\n",
"2023-07-02 18:20:44,819 - modelscope - INFO - epoch [1][1820/4953]\tlr: 7.385e-05, memory: 9058, loss: 1.2756\n",
"2023-07-02 18:20:50,296 - modelscope - INFO - epoch [1][1825/4953]\tlr: 7.372e-05, memory: 9058, loss: 1.4785\n",
"2023-07-02 18:20:56,799 - modelscope - INFO - epoch [1][1830/4953]\tlr: 7.358e-05, memory: 9058, loss: 1.5188\n",
"2023-07-02 18:21:03,334 - modelscope - INFO - epoch [1][1835/4953]\tlr: 7.345e-05, memory: 9058, loss: 0.6644\n",
"2023-07-02 18:21:10,067 - modelscope - INFO - epoch [1][1840/4953]\tlr: 7.332e-05, memory: 9058, loss: 0.9434\n",
"2023-07-02 18:21:16,554 - modelscope - INFO - epoch [1][1845/4953]\tlr: 7.319e-05, memory: 9058, loss: 0.7092\n",
"2023-07-02 18:21:23,374 - modelscope - INFO - epoch [1][1850/4953]\tlr: 7.306e-05, memory: 9058, loss: 1.1020\n",
"2023-07-02 18:21:32,187 - modelscope - INFO - epoch [1][1855/4953]\tlr: 7.293e-05, memory: 9058, loss: 1.1508\n",
"2023-07-02 18:21:37,254 - modelscope - INFO - epoch [1][1860/4953]\tlr: 7.280e-05, memory: 9058, loss: 1.6852\n",
"2023-07-02 18:21:42,410 - modelscope - INFO - epoch [1][1865/4953]\tlr: 7.266e-05, memory: 9058, loss: 0.9865\n",
"2023-07-02 18:21:47,494 - modelscope - INFO - epoch [1][1870/4953]\tlr: 7.253e-05, memory: 9058, loss: 1.4111\n",
"2023-07-02 18:21:51,877 - modelscope - INFO - epoch [1][1875/4953]\tlr: 7.240e-05, memory: 9058, loss: 1.9342\n",
"2023-07-02 18:21:57,909 - modelscope - INFO - epoch [1][1880/4953]\tlr: 7.227e-05, memory: 9058, loss: 1.5063\n",
"2023-07-02 18:22:03,018 - modelscope - INFO - epoch [1][1885/4953]\tlr: 7.213e-05, memory: 9058, loss: 1.5504\n",
"2023-07-02 18:22:07,481 - modelscope - INFO - epoch [1][1890/4953]\tlr: 7.200e-05, memory: 9058, loss: 1.2473\n",
"2023-07-02 18:22:12,667 - modelscope - INFO - epoch [1][1895/4953]\tlr: 7.187e-05, memory: 9058, loss: 2.0055\n",
"2023-07-02 18:22:17,967 - modelscope - INFO - epoch [1][1900/4953]\tlr: 7.174e-05, memory: 9058, loss: 0.7781\n",
"2023-07-02 18:22:24,563 - modelscope - INFO - epoch [1][1905/4953]\tlr: 7.160e-05, memory: 9058, loss: 1.1995\n",
"2023-07-02 18:22:28,670 - modelscope - INFO - epoch [1][1910/4953]\tlr: 7.147e-05, memory: 9058, loss: 2.4594\n",
"2023-07-02 18:22:35,136 - modelscope - INFO - epoch [1][1915/4953]\tlr: 7.133e-05, memory: 9058, loss: 0.7545\n",
"2023-07-02 18:22:41,042 - modelscope - INFO - epoch [1][1920/4953]\tlr: 7.120e-05, memory: 9058, loss: 1.8008\n",
"2023-07-02 18:22:45,686 - modelscope - INFO - epoch [1][1925/4953]\tlr: 7.107e-05, memory: 9058, loss: 1.4076\n",
"2023-07-02 18:22:50,652 - modelscope - INFO - epoch [1][1930/4953]\tlr: 7.093e-05, memory: 9058, loss: 1.6135\n",
"2023-07-02 18:22:55,346 - modelscope - INFO - epoch [1][1935/4953]\tlr: 7.080e-05, memory: 9058, loss: 1.3820\n",
"2023-07-02 18:23:00,407 - modelscope - INFO - epoch [1][1940/4953]\tlr: 7.066e-05, memory: 9058, loss: 1.3170\n",
"2023-07-02 18:23:07,089 - modelscope - INFO - epoch [1][1945/4953]\tlr: 7.053e-05, memory: 9058, loss: 1.5059\n",
"2023-07-02 18:23:14,519 - modelscope - INFO - epoch [1][1950/4953]\tlr: 7.039e-05, memory: 9058, loss: 1.1481\n",
"2023-07-02 18:23:20,167 - modelscope - INFO - epoch [1][1955/4953]\tlr: 7.026e-05, memory: 9058, loss: 1.5484\n",
"2023-07-02 18:23:26,522 - modelscope - INFO - epoch [1][1960/4953]\tlr: 7.012e-05, memory: 9058, loss: 1.5056\n",
"2023-07-02 18:23:31,990 - modelscope - INFO - epoch [1][1965/4953]\tlr: 6.999e-05, memory: 9058, loss: 0.8258\n",
"2023-07-02 18:23:36,765 - modelscope - INFO - epoch [1][1970/4953]\tlr: 6.985e-05, memory: 9058, loss: 2.1605\n",
"2023-07-02 18:23:44,015 - modelscope - INFO - epoch [1][1975/4953]\tlr: 6.972e-05, memory: 9058, loss: 0.5347\n",
"2023-07-02 18:23:50,763 - modelscope - INFO - epoch [1][1980/4953]\tlr: 6.958e-05, memory: 9058, loss: 0.5833\n",
"2023-07-02 18:23:56,081 - modelscope - INFO - epoch [1][1985/4953]\tlr: 6.945e-05, memory: 9058, loss: 1.3211\n",
"2023-07-02 18:24:02,890 - modelscope - INFO - epoch [1][1990/4953]\tlr: 6.931e-05, memory: 9058, loss: 0.6614\n",
"2023-07-02 18:24:11,102 - modelscope - INFO - epoch [1][1995/4953]\tlr: 6.917e-05, memory: 9058, loss: 1.0019\n",
"2023-07-02 18:24:15,188 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:26:31,178 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
"2023-07-02 18:26:31,219 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter1800_acc0.79673832654953\n",
"2023-07-02 18:26:31,223 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
"2023-07-02 18:26:31,262 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_1800\n",
"2023-07-02 18:26:31,267 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.8048, evaluation/loss: 1.3532, loss: 2.3406\n",
"2023-07-02 18:26:36,725 - modelscope - INFO - epoch [1][2005/4953]\tlr: 6.890e-05, memory: 9058, loss: 1.7643\n",
"2023-07-02 18:26:43,719 - modelscope - INFO - epoch [1][2010/4953]\tlr: 6.876e-05, memory: 9058, loss: 1.3211\n",
"2023-07-02 18:26:50,532 - modelscope - INFO - epoch [1][2015/4953]\tlr: 6.863e-05, memory: 9058, loss: 1.0998\n",
"2023-07-02 18:26:55,084 - modelscope - INFO - epoch [1][2020/4953]\tlr: 6.849e-05, memory: 9058, loss: 1.0711\n",
"2023-07-02 18:27:01,229 - modelscope - INFO - epoch [1][2025/4953]\tlr: 6.835e-05, memory: 9058, loss: 0.9915\n",
"2023-07-02 18:27:05,887 - modelscope - INFO - epoch [1][2030/4953]\tlr: 6.822e-05, memory: 9058, loss: 1.4650\n",
"2023-07-02 18:27:10,177 - modelscope - INFO - epoch [1][2035/4953]\tlr: 6.808e-05, memory: 9058, loss: 1.7047\n",
"2023-07-02 18:27:16,232 - modelscope - INFO - epoch [1][2040/4953]\tlr: 6.794e-05, memory: 9058, loss: 1.1574\n",
"2023-07-02 18:27:20,822 - modelscope - INFO - epoch [1][2045/4953]\tlr: 6.780e-05, memory: 9058, loss: 2.8094\n",
"2023-07-02 18:27:26,542 - modelscope - INFO - epoch [1][2050/4953]\tlr: 6.767e-05, memory: 9058, loss: 1.8707\n",
"2023-07-02 18:27:33,544 - modelscope - INFO - epoch [1][2055/4953]\tlr: 6.753e-05, memory: 9058, loss: 0.4879\n",
"2023-07-02 18:27:38,872 - modelscope - INFO - epoch [1][2060/4953]\tlr: 6.739e-05, memory: 9058, loss: 1.4332\n",
"2023-07-02 18:27:45,755 - modelscope - INFO - epoch [1][2065/4953]\tlr: 6.725e-05, memory: 9058, loss: 1.3403\n",
"2023-07-02 18:27:52,231 - modelscope - INFO - epoch [1][2070/4953]\tlr: 6.712e-05, memory: 9058, loss: 1.4531\n",
"2023-07-02 18:27:55,367 - modelscope - INFO - epoch [1][2075/4953]\tlr: 6.698e-05, memory: 9058, loss: 2.8781\n",
"2023-07-02 18:28:03,691 - modelscope - INFO - epoch [1][2080/4953]\tlr: 6.684e-05, memory: 9058, loss: 1.1735\n",
"2023-07-02 18:28:12,186 - modelscope - INFO - epoch [1][2085/4953]\tlr: 6.670e-05, memory: 9058, loss: 0.9088\n",
"2023-07-02 18:28:18,486 - modelscope - INFO - epoch [1][2090/4953]\tlr: 6.656e-05, memory: 9058, loss: 0.4293\n",
"2023-07-02 18:28:24,461 - modelscope - INFO - epoch [1][2095/4953]\tlr: 6.642e-05, memory: 9058, loss: 2.8336\n",
"2023-07-02 18:28:31,009 - modelscope - INFO - epoch [1][2100/4953]\tlr: 6.628e-05, memory: 9058, loss: 0.6750\n",
"2023-07-02 18:28:35,682 - modelscope - INFO - epoch [1][2105/4953]\tlr: 6.614e-05, memory: 9058, loss: 1.2004\n",
"2023-07-02 18:28:42,815 - modelscope - INFO - epoch [1][2110/4953]\tlr: 6.601e-05, memory: 9058, loss: 0.7390\n",
"2023-07-02 18:28:48,536 - modelscope - INFO - epoch [1][2115/4953]\tlr: 6.587e-05, memory: 9058, loss: 1.2892\n",
"2023-07-02 18:28:54,885 - modelscope - INFO - epoch [1][2120/4953]\tlr: 6.573e-05, memory: 9058, loss: 1.1596\n",
"2023-07-02 18:29:01,644 - modelscope - INFO - epoch [1][2125/4953]\tlr: 6.559e-05, memory: 9058, loss: 1.2383\n",
"2023-07-02 18:29:06,513 - modelscope - INFO - epoch [1][2130/4953]\tlr: 6.545e-05, memory: 9058, loss: 1.6500\n",
"2023-07-02 18:29:12,125 - modelscope - INFO - epoch [1][2135/4953]\tlr: 6.531e-05, memory: 9058, loss: 1.4234\n",
"2023-07-02 18:29:16,930 - modelscope - INFO - epoch [1][2140/4953]\tlr: 6.517e-05, memory: 9058, loss: 0.9209\n",
"2023-07-02 18:29:23,051 - modelscope - INFO - epoch [1][2145/4953]\tlr: 6.503e-05, memory: 9058, loss: 1.3340\n",
"2023-07-02 18:29:26,259 - modelscope - INFO - epoch [1][2150/4953]\tlr: 6.489e-05, memory: 9058, loss: 2.2531\n",
"2023-07-02 18:29:30,151 - modelscope - INFO - epoch [1][2155/4953]\tlr: 6.475e-05, memory: 9058, loss: 2.4398\n",
"2023-07-02 18:29:35,984 - modelscope - INFO - epoch [1][2160/4953]\tlr: 6.461e-05, memory: 9058, loss: 1.2609\n",
"2023-07-02 18:29:42,072 - modelscope - INFO - epoch [1][2165/4953]\tlr: 6.447e-05, memory: 9058, loss: 1.3589\n",
"2023-07-02 18:29:47,131 - modelscope - INFO - epoch [1][2170/4953]\tlr: 6.433e-05, memory: 9058, loss: 1.9894\n",
"2023-07-02 18:29:52,463 - modelscope - INFO - epoch [1][2175/4953]\tlr: 6.419e-05, memory: 9058, loss: 1.4546\n",
"2023-07-02 18:29:56,467 - modelscope - INFO - epoch [1][2180/4953]\tlr: 6.405e-05, memory: 9058, loss: 2.2633\n",
"2023-07-02 18:30:00,810 - modelscope - INFO - epoch [1][2185/4953]\tlr: 6.391e-05, memory: 9058, loss: 1.4179\n",
"2023-07-02 18:30:04,745 - modelscope - INFO - epoch [1][2190/4953]\tlr: 6.377e-05, memory: 9058, loss: 1.1947\n",
"2023-07-02 18:30:10,179 - modelscope - INFO - epoch [1][2195/4953]\tlr: 6.363e-05, memory: 9058, loss: 1.5030\n",
"2023-07-02 18:30:16,533 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
"2023-07-02 18:32:32,577 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
"2023-07-02 18:32:32,617 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2000_acc0.8048229217529297\n",
"2023-07-02 18:32:32,621 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
"2023-07-02 18:32:32,661 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2000\n",
"2023-07-02 18:32:32,665 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9058, evaluation/acc: 0.8064, evaluation/loss: 1.3193, loss: 0.8660\n",
"2023-07-02 18:32:38,756 - modelscope - INFO - epoch [1][2205/4953]\tlr: 6.334e-05, memory: 9058, loss: 1.2521\n",
"2023-07-02 18:32:45,468 - modelscope - INFO - epoch [1][2210/4953]\tlr: 6.320e-05, memory: 9058, loss: 1.0652\n",
"2023-07-02 18:32:51,626 - modelscope - INFO - epoch [1][2215/4953]\tlr: 6.306e-05, memory: 9058, loss: 0.8250\n",
"2023-07-02 18:32:56,742 - modelscope - INFO - epoch [1][2220/4953]\tlr: 6.292e-05, memory: 9058, loss: 1.2680\n",
"2023-07-02 18:33:02,927 - modelscope - INFO - epoch [1][2225/4953]\tlr: 6.278e-05, memory: 9058, loss: 1.5531\n",
"2023-07-02 18:33:08,196 - modelscope - INFO - epoch [1][2230/4953]\tlr: 6.264e-05, memory: 9058, loss: 1.5766\n",
"2023-07-02 18:33:14,926 - modelscope - INFO - epoch [1][2235/4953]\tlr: 6.250e-05, memory: 9058, loss: 1.6031\n",
"2023-07-02 18:33:19,152 - modelscope - INFO - epoch [1][2240/4953]\tlr: 6.236e-05, memory: 9058, loss: 1.8438\n",
"2023-07-02 18:33:26,986 - modelscope - INFO - epoch [1][2245/4953]\tlr: 6.221e-05, memory: 9058, loss: 1.0715\n",
"2023-07-02 18:33:34,062 - modelscope - INFO - epoch [1][2250/4953]\tlr: 6.207e-05, memory: 9058, loss: 1.3094\n",
"2023-07-02 18:33:40,767 - modelscope - INFO - epoch [1][2255/4953]\tlr: 6.193e-05, memory: 9058, loss: 0.5586\n",
"2023-07-02 18:33:45,996 - modelscope - INFO - epoch [1][2260/4953]\tlr: 6.179e-05, memory: 9058, loss: 1.0727\n",
"2023-07-02 18:33:50,926 - modelscope - INFO - epoch [1][2265/4953]\tlr: 6.165e-05, memory: 9058, loss: 0.5758\n",
"2023-07-02 18:33:54,762 - modelscope - INFO - epoch [1][2270/4953]\tlr: 6.151e-05, memory: 9058, loss: 1.1336\n",
"2023-07-02 18:34:00,210 - modelscope - INFO - epoch [1][2275/4953]\tlr: 6.136e-05, memory: 9058, loss: 1.0373\n",
"2023-07-02 18:34:08,272 - modelscope - INFO - epoch [1][2280/4953]\tlr: 6.122e-05, memory: 9058, loss: 0.7815\n",
"2023-07-02 18:34:14,309 - modelscope - INFO - epoch [1][2285/4953]\tlr: 6.108e-05, memory: 9058, loss: 1.4531\n",
"2023-07-02 18:34:21,626 - modelscope - INFO - epoch [1][2290/4953]\tlr: 6.094e-05, memory: 9058, loss: 1.6297\n",
"2023-07-02 18:34:28,588 - modelscope - INFO - epoch [1][2295/4953]\tlr: 6.080e-05, memory: 9082, loss: 1.6783\n",
"2023-07-02 18:34:33,419 - modelscope - INFO - epoch [1][2300/4953]\tlr: 6.065e-05, memory: 9082, loss: 2.0078\n",
"2023-07-02 18:34:38,966 - modelscope - INFO - epoch [1][2305/4953]\tlr: 6.051e-05, memory: 9082, loss: 1.6065\n",
"2023-07-02 18:34:44,320 - modelscope - INFO - epoch [1][2310/4953]\tlr: 6.037e-05, memory: 9082, loss: 1.6664\n",
"2023-07-02 18:34:49,557 - modelscope - INFO - epoch [1][2315/4953]\tlr: 6.023e-05, memory: 9082, loss: 2.1622\n",
"2023-07-02 18:34:54,691 - modelscope - INFO - epoch [1][2320/4953]\tlr: 6.008e-05, memory: 9082, loss: 2.2738\n",
"2023-07-02 18:35:02,067 - modelscope - INFO - epoch [1][2325/4953]\tlr: 5.994e-05, memory: 9082, loss: 0.6338\n",
"2023-07-02 18:35:07,658 - modelscope - INFO - epoch [1][2330/4953]\tlr: 5.980e-05, memory: 9082, loss: 0.9046\n",
"2023-07-02 18:35:13,966 - modelscope - INFO - epoch [1][2335/4953]\tlr: 5.966e-05, memory: 9082, loss: 1.2388\n",
"2023-07-02 18:35:19,741 - modelscope - INFO - epoch [1][2340/4953]\tlr: 5.951e-05, memory: 9082, loss: 0.7371\n",
"2023-07-02 18:35:25,904 - modelscope - INFO - epoch [1][2345/4953]\tlr: 5.937e-05, memory: 9082, loss: 1.4103\n",
"2023-07-02 18:35:31,382 - modelscope - INFO - epoch [1][2350/4953]\tlr: 5.923e-05, memory: 9082, loss: 1.4088\n",
"2023-07-02 18:35:36,193 - modelscope - INFO - epoch [1][2355/4953]\tlr: 5.909e-05, memory: 9082, loss: 2.0184\n",
"2023-07-02 18:35:40,781 - modelscope - INFO - epoch [1][2360/4953]\tlr: 5.894e-05, memory: 9082, loss: 1.1237\n",
"2023-07-02 18:35:45,133 - modelscope - INFO - epoch [1][2365/4953]\tlr: 5.880e-05, memory: 9082, loss: 2.1938\n",
"2023-07-02 18:35:51,029 - modelscope - INFO - epoch [1][2370/4953]\tlr: 5.866e-05, memory: 9082, loss: 0.9563\n",
"2023-07-02 18:35:57,943 - modelscope - INFO - epoch [1][2375/4953]\tlr: 5.852e-05, memory: 9082, loss: 1.3258\n",
"2023-07-02 18:36:05,016 - modelscope - INFO - epoch [1][2380/4953]\tlr: 5.837e-05, memory: 9082, loss: 1.2687\n",
"2023-07-02 18:36:09,977 - modelscope - INFO - epoch [1][2385/4953]\tlr: 5.823e-05, memory: 9082, loss: 1.2655\n",
"2023-07-02 18:36:16,229 - modelscope - INFO - epoch [1][2390/4953]\tlr: 5.809e-05, memory: 9082, loss: 0.9164\n",
"2023-07-02 18:36:21,471 - modelscope - INFO - epoch [1][2395/4953]\tlr: 5.794e-05, memory: 9082, loss: 1.6281\n",
"2023-07-02 18:36:27,959 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:38:43,433 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
"2023-07-02 18:38:43,474 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2200_acc0.8063529133796692\n",
"2023-07-02 18:38:43,478 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
"2023-07-02 18:38:43,517 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2200\n",
"2023-07-02 18:38:43,521 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8076, evaluation/loss: 1.3023, loss: 0.6604\n",
"2023-07-02 18:38:48,050 - modelscope - INFO - epoch [1][2405/4953]\tlr: 5.766e-05, memory: 9082, loss: 1.8258\n",
"2023-07-02 18:38:54,650 - modelscope - INFO - epoch [1][2410/4953]\tlr: 5.751e-05, memory: 9082, loss: 1.3132\n",
"2023-07-02 18:38:59,846 - modelscope - INFO - epoch [1][2415/4953]\tlr: 5.737e-05, memory: 9082, loss: 1.6910\n",
"2023-07-02 18:39:07,443 - modelscope - INFO - epoch [1][2420/4953]\tlr: 5.723e-05, memory: 9082, loss: 1.4445\n",
"2023-07-02 18:39:15,603 - modelscope - INFO - epoch [1][2425/4953]\tlr: 5.708e-05, memory: 9082, loss: 0.9867\n",
"2023-07-02 18:39:21,112 - modelscope - INFO - epoch [1][2430/4953]\tlr: 5.694e-05, memory: 9082, loss: 1.5023\n",
"2023-07-02 18:39:26,278 - modelscope - INFO - epoch [1][2435/4953]\tlr: 5.680e-05, memory: 9082, loss: 1.5297\n",
"2023-07-02 18:39:32,189 - modelscope - INFO - epoch [1][2440/4953]\tlr: 5.666e-05, memory: 9082, loss: 1.2663\n",
"2023-07-02 18:39:39,288 - modelscope - INFO - epoch [1][2445/4953]\tlr: 5.651e-05, memory: 9082, loss: 1.1214\n",
"2023-07-02 18:39:45,604 - modelscope - INFO - epoch [1][2450/4953]\tlr: 5.637e-05, memory: 9082, loss: 0.7744\n",
"2023-07-02 18:39:50,026 - modelscope - INFO - epoch [1][2455/4953]\tlr: 5.623e-05, memory: 9082, loss: 1.3865\n",
"2023-07-02 18:39:57,039 - modelscope - INFO - epoch [1][2460/4953]\tlr: 5.608e-05, memory: 9082, loss: 0.5821\n",
"2023-07-02 18:40:04,905 - modelscope - INFO - epoch [1][2465/4953]\tlr: 5.594e-05, memory: 9082, loss: 1.6459\n",
"2023-07-02 18:40:12,277 - modelscope - INFO - epoch [1][2470/4953]\tlr: 5.580e-05, memory: 9082, loss: 1.5098\n",
"2023-07-02 18:40:21,189 - modelscope - INFO - epoch [1][2475/4953]\tlr: 5.565e-05, memory: 9082, loss: 0.7347\n",
"2023-07-02 18:40:25,832 - modelscope - INFO - epoch [1][2480/4953]\tlr: 5.551e-05, memory: 9082, loss: 1.9617\n",
"2023-07-02 18:40:31,034 - modelscope - INFO - epoch [1][2485/4953]\tlr: 5.537e-05, memory: 9082, loss: 1.3300\n",
"2023-07-02 18:40:35,486 - modelscope - INFO - epoch [1][2490/4953]\tlr: 5.522e-05, memory: 9082, loss: 1.7078\n",
"2023-07-02 18:40:43,211 - modelscope - INFO - epoch [1][2495/4953]\tlr: 5.508e-05, memory: 9082, loss: 1.5921\n",
"2023-07-02 18:40:48,454 - modelscope - INFO - epoch [1][2500/4953]\tlr: 5.494e-05, memory: 9082, loss: 1.9926\n",
"2023-07-02 18:40:53,713 - modelscope - INFO - epoch [1][2505/4953]\tlr: 5.479e-05, memory: 9082, loss: 1.1594\n",
"2023-07-02 18:40:58,439 - modelscope - INFO - epoch [1][2510/4953]\tlr: 5.465e-05, memory: 9082, loss: 1.1770\n",
"2023-07-02 18:41:04,372 - modelscope - INFO - epoch [1][2515/4953]\tlr: 5.451e-05, memory: 9082, loss: 1.6250\n",
"2023-07-02 18:41:09,182 - modelscope - INFO - epoch [1][2520/4953]\tlr: 5.436e-05, memory: 9082, loss: 1.7578\n",
"2023-07-02 18:41:14,114 - modelscope - INFO - epoch [1][2525/4953]\tlr: 5.422e-05, memory: 9082, loss: 2.3328\n",
"2023-07-02 18:41:20,090 - modelscope - INFO - epoch [1][2530/4953]\tlr: 5.408e-05, memory: 9082, loss: 2.0059\n",
"2023-07-02 18:41:24,643 - modelscope - INFO - epoch [1][2535/4953]\tlr: 5.393e-05, memory: 9082, loss: 1.9216\n",
"2023-07-02 18:41:30,805 - modelscope - INFO - epoch [1][2540/4953]\tlr: 5.379e-05, memory: 9082, loss: 0.7870\n",
"2023-07-02 18:41:35,276 - modelscope - INFO - epoch [1][2545/4953]\tlr: 5.365e-05, memory: 9082, loss: 1.8344\n",
"2023-07-02 18:41:40,107 - modelscope - INFO - epoch [1][2550/4953]\tlr: 5.350e-05, memory: 9082, loss: 1.0918\n",
"2023-07-02 18:41:45,127 - modelscope - INFO - epoch [1][2555/4953]\tlr: 5.336e-05, memory: 9082, loss: 0.8277\n",
"2023-07-02 18:41:49,439 - modelscope - INFO - epoch [1][2560/4953]\tlr: 5.322e-05, memory: 9082, loss: 1.3539\n",
"2023-07-02 18:41:54,796 - modelscope - INFO - epoch [1][2565/4953]\tlr: 5.307e-05, memory: 9082, loss: 1.4898\n",
"2023-07-02 18:41:59,982 - modelscope - INFO - epoch [1][2570/4953]\tlr: 5.293e-05, memory: 9082, loss: 1.4383\n",
"2023-07-02 18:42:06,280 - modelscope - INFO - epoch [1][2575/4953]\tlr: 5.279e-05, memory: 9082, loss: 1.3823\n",
"2023-07-02 18:42:11,765 - modelscope - INFO - epoch [1][2580/4953]\tlr: 5.264e-05, memory: 9082, loss: 1.6961\n",
"2023-07-02 18:42:18,475 - modelscope - INFO - epoch [1][2585/4953]\tlr: 5.250e-05, memory: 9082, loss: 1.7096\n",
"2023-07-02 18:42:25,377 - modelscope - INFO - epoch [1][2590/4953]\tlr: 5.236e-05, memory: 9082, loss: 0.2711\n",
"2023-07-02 18:42:31,462 - modelscope - INFO - epoch [1][2595/4953]\tlr: 5.222e-05, memory: 9082, loss: 1.8032\n",
"2023-07-02 18:42:37,270 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:44:53,170 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
"2023-07-02 18:44:53,210 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2400_acc0.8075699210166931\n",
"2023-07-02 18:44:53,214 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
"2023-07-02 18:44:53,253 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2400\n",
"2023-07-02 18:44:53,258 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8082, evaluation/loss: 1.3051, loss: 1.3200\n",
"2023-07-02 18:44:56,746 - modelscope - INFO - epoch [1][2605/4953]\tlr: 5.193e-05, memory: 9082, loss: 2.4016\n",
"2023-07-02 18:45:02,237 - modelscope - INFO - epoch [1][2610/4953]\tlr: 5.179e-05, memory: 9082, loss: 1.4620\n",
"2023-07-02 18:45:08,746 - modelscope - INFO - epoch [1][2615/4953]\tlr: 5.164e-05, memory: 9082, loss: 1.0342\n",
"2023-07-02 18:45:15,827 - modelscope - INFO - epoch [1][2620/4953]\tlr: 5.150e-05, memory: 9082, loss: 1.2133\n",
"2023-07-02 18:45:20,967 - modelscope - INFO - epoch [1][2625/4953]\tlr: 5.136e-05, memory: 9082, loss: 1.1039\n",
"2023-07-02 18:45:28,010 - modelscope - INFO - epoch [1][2630/4953]\tlr: 5.122e-05, memory: 9082, loss: 2.2398\n",
"2023-07-02 18:45:33,346 - modelscope - INFO - epoch [1][2635/4953]\tlr: 5.107e-05, memory: 9082, loss: 1.0719\n",
"2023-07-02 18:45:38,505 - modelscope - INFO - epoch [1][2640/4953]\tlr: 5.093e-05, memory: 9082, loss: 2.1718\n",
"2023-07-02 18:45:46,286 - modelscope - INFO - epoch [1][2645/4953]\tlr: 5.079e-05, memory: 9082, loss: 1.4109\n",
"2023-07-02 18:45:50,359 - modelscope - INFO - epoch [1][2650/4953]\tlr: 5.065e-05, memory: 9082, loss: 2.7281\n",
"2023-07-02 18:45:54,451 - modelscope - INFO - epoch [1][2655/4953]\tlr: 5.050e-05, memory: 9082, loss: 1.4117\n",
"2023-07-02 18:46:01,191 - modelscope - INFO - epoch [1][2660/4953]\tlr: 5.036e-05, memory: 9082, loss: 1.0565\n",
"2023-07-02 18:46:06,247 - modelscope - INFO - epoch [1][2665/4953]\tlr: 5.022e-05, memory: 9082, loss: 0.9540\n",
"2023-07-02 18:46:13,076 - modelscope - INFO - epoch [1][2670/4953]\tlr: 5.008e-05, memory: 9082, loss: 1.5935\n",
"2023-07-02 18:46:18,638 - modelscope - INFO - epoch [1][2675/4953]\tlr: 4.993e-05, memory: 9082, loss: 2.1958\n",
"2023-07-02 18:46:23,885 - modelscope - INFO - epoch [1][2680/4953]\tlr: 4.979e-05, memory: 9082, loss: 1.6164\n",
"2023-07-02 18:46:31,178 - modelscope - INFO - epoch [1][2685/4953]\tlr: 4.965e-05, memory: 9082, loss: 0.9352\n",
"2023-07-02 18:46:38,014 - modelscope - INFO - epoch [1][2690/4953]\tlr: 4.951e-05, memory: 9082, loss: 1.4887\n",
"2023-07-02 18:46:41,545 - modelscope - INFO - epoch [1][2695/4953]\tlr: 4.936e-05, memory: 9082, loss: 1.2578\n",
"2023-07-02 18:46:46,458 - modelscope - INFO - epoch [1][2700/4953]\tlr: 4.922e-05, memory: 9082, loss: 1.1711\n",
"2023-07-02 18:46:53,227 - modelscope - INFO - epoch [1][2705/4953]\tlr: 4.908e-05, memory: 9082, loss: 1.3223\n",
"2023-07-02 18:46:59,578 - modelscope - INFO - epoch [1][2710/4953]\tlr: 4.894e-05, memory: 9082, loss: 1.4570\n",
"2023-07-02 18:47:04,896 - modelscope - INFO - epoch [1][2715/4953]\tlr: 4.880e-05, memory: 9082, loss: 1.0868\n",
"2023-07-02 18:47:10,404 - modelscope - INFO - epoch [1][2720/4953]\tlr: 4.865e-05, memory: 9082, loss: 1.5884\n",
"2023-07-02 18:47:16,038 - modelscope - INFO - epoch [1][2725/4953]\tlr: 4.851e-05, memory: 9082, loss: 1.0243\n",
"2023-07-02 18:47:22,354 - modelscope - INFO - epoch [1][2730/4953]\tlr: 4.837e-05, memory: 9082, loss: 1.4346\n",
"2023-07-02 18:47:29,290 - modelscope - INFO - epoch [1][2735/4953]\tlr: 4.823e-05, memory: 9082, loss: 0.9521\n",
"2023-07-02 18:47:37,813 - modelscope - INFO - epoch [1][2740/4953]\tlr: 4.809e-05, memory: 9082, loss: 0.7296\n",
"2023-07-02 18:47:40,908 - modelscope - INFO - epoch [1][2745/4953]\tlr: 4.795e-05, memory: 9082, loss: 1.5844\n",
"2023-07-02 18:47:46,334 - modelscope - INFO - epoch [1][2750/4953]\tlr: 4.781e-05, memory: 9082, loss: 1.5023\n",
"2023-07-02 18:47:51,224 - modelscope - INFO - epoch [1][2755/4953]\tlr: 4.766e-05, memory: 9082, loss: 0.9710\n",
"2023-07-02 18:47:58,431 - modelscope - INFO - epoch [1][2760/4953]\tlr: 4.752e-05, memory: 9082, loss: 1.1539\n",
"2023-07-02 18:48:04,898 - modelscope - INFO - epoch [1][2765/4953]\tlr: 4.738e-05, memory: 9082, loss: 1.6984\n",
"2023-07-02 18:48:10,316 - modelscope - INFO - epoch [1][2770/4953]\tlr: 4.724e-05, memory: 9082, loss: 1.5420\n",
"2023-07-02 18:48:16,843 - modelscope - INFO - epoch [1][2775/4953]\tlr: 4.710e-05, memory: 9082, loss: 1.2396\n",
"2023-07-02 18:48:22,406 - modelscope - INFO - epoch [1][2780/4953]\tlr: 4.696e-05, memory: 9082, loss: 1.8611\n",
"2023-07-02 18:48:28,234 - modelscope - INFO - epoch [1][2785/4953]\tlr: 4.682e-05, memory: 9082, loss: 1.2051\n",
"2023-07-02 18:48:35,175 - modelscope - INFO - epoch [1][2790/4953]\tlr: 4.668e-05, memory: 9082, loss: 0.9440\n",
"2023-07-02 18:48:40,689 - modelscope - INFO - epoch [1][2795/4953]\tlr: 4.654e-05, memory: 9082, loss: 1.5422\n",
"2023-07-02 18:48:46,340 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:51:02,313 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
"2023-07-02 18:51:02,352 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2600\n",
"2023-07-02 18:51:02,357 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8080, evaluation/loss: 1.2874, loss: 0.3999\n",
"2023-07-02 18:51:09,389 - modelscope - INFO - epoch [1][2805/4953]\tlr: 4.625e-05, memory: 9082, loss: 0.9511\n",
"2023-07-02 18:51:14,406 - modelscope - INFO - epoch [1][2810/4953]\tlr: 4.611e-05, memory: 9082, loss: 0.9344\n",
"2023-07-02 18:51:19,383 - modelscope - INFO - epoch [1][2815/4953]\tlr: 4.597e-05, memory: 9082, loss: 1.5798\n",
"2023-07-02 18:51:26,100 - modelscope - INFO - epoch [1][2820/4953]\tlr: 4.583e-05, memory: 9082, loss: 1.1518\n",
"2023-07-02 18:51:31,560 - modelscope - INFO - epoch [1][2825/4953]\tlr: 4.569e-05, memory: 9082, loss: 1.9438\n",
"2023-07-02 18:51:37,772 - modelscope - INFO - epoch [1][2830/4953]\tlr: 4.555e-05, memory: 9082, loss: 1.2336\n",
"2023-07-02 18:51:45,037 - modelscope - INFO - epoch [1][2835/4953]\tlr: 4.541e-05, memory: 9082, loss: 0.4342\n",
"2023-07-02 18:51:50,379 - modelscope - INFO - epoch [1][2840/4953]\tlr: 4.527e-05, memory: 9082, loss: 1.5258\n",
"2023-07-02 18:51:55,219 - modelscope - INFO - epoch [1][2845/4953]\tlr: 4.513e-05, memory: 9082, loss: 1.3063\n",
"2023-07-02 18:52:00,648 - modelscope - INFO - epoch [1][2850/4953]\tlr: 4.499e-05, memory: 9082, loss: 1.0977\n",
"2023-07-02 18:52:05,123 - modelscope - INFO - epoch [1][2855/4953]\tlr: 4.486e-05, memory: 9082, loss: 1.2469\n",
"2023-07-02 18:52:10,542 - modelscope - INFO - epoch [1][2860/4953]\tlr: 4.472e-05, memory: 9082, loss: 1.0984\n",
"2023-07-02 18:52:17,747 - modelscope - INFO - epoch [1][2865/4953]\tlr: 4.458e-05, memory: 9082, loss: 0.7611\n",
"2023-07-02 18:52:23,635 - modelscope - INFO - epoch [1][2870/4953]\tlr: 4.444e-05, memory: 9082, loss: 1.9703\n",
"2023-07-02 18:52:29,494 - modelscope - INFO - epoch [1][2875/4953]\tlr: 4.430e-05, memory: 9082, loss: 1.2950\n",
"2023-07-02 18:52:35,837 - modelscope - INFO - epoch [1][2880/4953]\tlr: 4.416e-05, memory: 9082, loss: 0.8969\n",
"2023-07-02 18:52:40,187 - modelscope - INFO - epoch [1][2885/4953]\tlr: 4.402e-05, memory: 9082, loss: 2.0484\n",
"2023-07-02 18:52:46,608 - modelscope - INFO - epoch [1][2890/4953]\tlr: 4.388e-05, memory: 9082, loss: 1.3309\n",
"2023-07-02 18:52:52,971 - modelscope - INFO - epoch [1][2895/4953]\tlr: 4.374e-05, memory: 9082, loss: 2.1859\n",
"2023-07-02 18:52:57,418 - modelscope - INFO - epoch [1][2900/4953]\tlr: 4.360e-05, memory: 9082, loss: 1.4730\n",
"2023-07-02 18:53:02,915 - modelscope - INFO - epoch [1][2905/4953]\tlr: 4.347e-05, memory: 9082, loss: 1.1398\n",
"2023-07-02 18:53:08,380 - modelscope - INFO - epoch [1][2910/4953]\tlr: 4.333e-05, memory: 9082, loss: 1.1520\n",
"2023-07-02 18:53:14,293 - modelscope - INFO - epoch [1][2915/4953]\tlr: 4.319e-05, memory: 9082, loss: 1.4763\n",
"2023-07-02 18:53:19,782 - modelscope - INFO - epoch [1][2920/4953]\tlr: 4.305e-05, memory: 9082, loss: 1.3924\n",
"2023-07-02 18:53:24,564 - modelscope - INFO - epoch [1][2925/4953]\tlr: 4.291e-05, memory: 9082, loss: 1.1281\n",
"2023-07-02 18:53:28,764 - modelscope - INFO - epoch [1][2930/4953]\tlr: 4.278e-05, memory: 9082, loss: 1.3961\n",
"2023-07-02 18:53:34,633 - modelscope - INFO - epoch [1][2935/4953]\tlr: 4.264e-05, memory: 9082, loss: 1.1989\n",
"2023-07-02 18:53:40,740 - modelscope - INFO - epoch [1][2940/4953]\tlr: 4.250e-05, memory: 9082, loss: 1.4141\n",
"2023-07-02 18:53:45,991 - modelscope - INFO - epoch [1][2945/4953]\tlr: 4.236e-05, memory: 9082, loss: 1.8516\n",
"2023-07-02 18:53:53,446 - modelscope - INFO - epoch [1][2950/4953]\tlr: 4.223e-05, memory: 9082, loss: 1.0945\n",
"2023-07-02 18:53:57,916 - modelscope - INFO - epoch [1][2955/4953]\tlr: 4.209e-05, memory: 9082, loss: 2.4191\n",
"2023-07-02 18:54:03,814 - modelscope - INFO - epoch [1][2960/4953]\tlr: 4.195e-05, memory: 9082, loss: 1.0555\n",
"2023-07-02 18:54:11,481 - modelscope - INFO - epoch [1][2965/4953]\tlr: 4.181e-05, memory: 9082, loss: 1.0359\n",
"2023-07-02 18:54:18,062 - modelscope - INFO - epoch [1][2970/4953]\tlr: 4.168e-05, memory: 9082, loss: 0.5380\n",
"2023-07-02 18:54:23,157 - modelscope - INFO - epoch [1][2975/4953]\tlr: 4.154e-05, memory: 9082, loss: 1.7539\n",
"2023-07-02 18:54:27,560 - modelscope - INFO - epoch [1][2980/4953]\tlr: 4.140e-05, memory: 9082, loss: 1.5100\n",
"2023-07-02 18:54:32,977 - modelscope - INFO - epoch [1][2985/4953]\tlr: 4.127e-05, memory: 9082, loss: 1.5968\n",
"2023-07-02 18:54:38,633 - modelscope - INFO - epoch [1][2990/4953]\tlr: 4.113e-05, memory: 9082, loss: 1.0911\n",
"2023-07-02 18:54:46,186 - modelscope - INFO - epoch [1][2995/4953]\tlr: 4.100e-05, memory: 9082, loss: 0.9789\n",
"2023-07-02 18:54:52,074 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 18:57:08,067 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
"2023-07-02 18:57:08,107 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter2600_acc0.8082306385040283\n",
"2023-07-02 18:57:08,111 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
"2023-07-02 18:57:08,150 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_2800\n",
"2023-07-02 18:57:08,155 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8084, evaluation/loss: 1.2728, loss: 0.7777\n",
"2023-07-02 18:57:14,568 - modelscope - INFO - epoch [1][3005/4953]\tlr: 4.072e-05, memory: 9082, loss: 1.7105\n",
"2023-07-02 18:57:20,305 - modelscope - INFO - epoch [1][3010/4953]\tlr: 4.059e-05, memory: 9082, loss: 0.9040\n",
"2023-07-02 18:57:25,518 - modelscope - INFO - epoch [1][3015/4953]\tlr: 4.045e-05, memory: 9082, loss: 1.3430\n",
"2023-07-02 18:57:30,679 - modelscope - INFO - epoch [1][3020/4953]\tlr: 4.032e-05, memory: 9082, loss: 1.9619\n",
"2023-07-02 18:57:36,997 - modelscope - INFO - epoch [1][3025/4953]\tlr: 4.018e-05, memory: 9082, loss: 0.9646\n",
"2023-07-02 18:57:42,949 - modelscope - INFO - epoch [1][3030/4953]\tlr: 4.005e-05, memory: 9082, loss: 0.8223\n",
"2023-07-02 18:57:47,568 - modelscope - INFO - epoch [1][3035/4953]\tlr: 3.991e-05, memory: 9082, loss: 1.9203\n",
"2023-07-02 18:57:53,111 - modelscope - INFO - epoch [1][3040/4953]\tlr: 3.978e-05, memory: 9082, loss: 1.0070\n",
"2023-07-02 18:57:59,474 - modelscope - INFO - epoch [1][3045/4953]\tlr: 3.964e-05, memory: 9082, loss: 1.2164\n",
"2023-07-02 18:58:04,237 - modelscope - INFO - epoch [1][3050/4953]\tlr: 3.951e-05, memory: 9082, loss: 1.6008\n",
"2023-07-02 18:58:09,687 - modelscope - INFO - epoch [1][3055/4953]\tlr: 3.937e-05, memory: 9082, loss: 2.0203\n",
"2023-07-02 18:58:14,949 - modelscope - INFO - epoch [1][3060/4953]\tlr: 3.924e-05, memory: 9082, loss: 1.4613\n",
"2023-07-02 18:58:21,818 - modelscope - INFO - epoch [1][3065/4953]\tlr: 3.911e-05, memory: 9082, loss: 1.2766\n",
"2023-07-02 18:58:28,251 - modelscope - INFO - epoch [1][3070/4953]\tlr: 3.897e-05, memory: 9082, loss: 1.2920\n",
"2023-07-02 18:58:34,440 - modelscope - INFO - epoch [1][3075/4953]\tlr: 3.884e-05, memory: 9082, loss: 1.1436\n",
"2023-07-02 18:58:41,344 - modelscope - INFO - epoch [1][3080/4953]\tlr: 3.870e-05, memory: 9082, loss: 1.6750\n",
"2023-07-02 18:58:47,507 - modelscope - INFO - epoch [1][3085/4953]\tlr: 3.857e-05, memory: 9082, loss: 1.4508\n",
"2023-07-02 18:58:53,152 - modelscope - INFO - epoch [1][3090/4953]\tlr: 3.844e-05, memory: 9082, loss: 1.1961\n",
"2023-07-02 18:58:57,615 - modelscope - INFO - epoch [1][3095/4953]\tlr: 3.830e-05, memory: 9082, loss: 2.0420\n",
"2023-07-02 18:59:04,675 - modelscope - INFO - epoch [1][3100/4953]\tlr: 3.817e-05, memory: 9082, loss: 0.3189\n",
"2023-07-02 18:59:09,594 - modelscope - INFO - epoch [1][3105/4953]\tlr: 3.804e-05, memory: 9082, loss: 1.5581\n",
"2023-07-02 18:59:16,591 - modelscope - INFO - epoch [1][3110/4953]\tlr: 3.791e-05, memory: 9082, loss: 0.9396\n",
"2023-07-02 18:59:23,334 - modelscope - INFO - epoch [1][3115/4953]\tlr: 3.777e-05, memory: 9082, loss: 0.6580\n",
"2023-07-02 18:59:28,047 - modelscope - INFO - epoch [1][3120/4953]\tlr: 3.764e-05, memory: 9082, loss: 1.4602\n",
"2023-07-02 18:59:31,315 - modelscope - INFO - epoch [1][3125/4953]\tlr: 3.751e-05, memory: 9082, loss: 1.3484\n",
"2023-07-02 18:59:36,121 - modelscope - INFO - epoch [1][3130/4953]\tlr: 3.738e-05, memory: 9082, loss: 2.1273\n",
"2023-07-02 18:59:44,336 - modelscope - INFO - epoch [1][3135/4953]\tlr: 3.725e-05, memory: 9082, loss: 0.8621\n",
"2023-07-02 18:59:49,884 - modelscope - INFO - epoch [1][3140/4953]\tlr: 3.712e-05, memory: 9082, loss: 1.0844\n",
"2023-07-02 18:59:52,597 - modelscope - INFO - epoch [1][3145/4953]\tlr: 3.698e-05, memory: 9082, loss: 1.5453\n",
"2023-07-02 18:59:59,243 - modelscope - INFO - epoch [1][3150/4953]\tlr: 3.685e-05, memory: 9082, loss: 1.1129\n",
"2023-07-02 19:00:04,220 - modelscope - INFO - epoch [1][3155/4953]\tlr: 3.672e-05, memory: 9082, loss: 1.1824\n",
"2023-07-02 19:00:11,762 - modelscope - INFO - epoch [1][3160/4953]\tlr: 3.659e-05, memory: 9082, loss: 0.5676\n",
"2023-07-02 19:00:18,630 - modelscope - INFO - epoch [1][3165/4953]\tlr: 3.646e-05, memory: 9082, loss: 0.9189\n",
"2023-07-02 19:00:23,483 - modelscope - INFO - epoch [1][3170/4953]\tlr: 3.633e-05, memory: 9082, loss: 1.0324\n",
"2023-07-02 19:00:27,164 - modelscope - INFO - epoch [1][3175/4953]\tlr: 3.620e-05, memory: 9082, loss: 1.2984\n",
"2023-07-02 19:00:32,041 - modelscope - INFO - epoch [1][3180/4953]\tlr: 3.607e-05, memory: 9082, loss: 1.6036\n",
"2023-07-02 19:00:37,245 - modelscope - INFO - epoch [1][3185/4953]\tlr: 3.594e-05, memory: 9082, loss: 1.3896\n",
"2023-07-02 19:00:44,493 - modelscope - INFO - epoch [1][3190/4953]\tlr: 3.581e-05, memory: 9082, loss: 1.1153\n",
"2023-07-02 19:00:49,874 - modelscope - INFO - epoch [1][3195/4953]\tlr: 3.568e-05, memory: 9082, loss: 1.2354\n",
"2023-07-02 19:00:55,061 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:03:10,730 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
"2023-07-02 19:03:10,770 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3000_acc0.8084218502044678\n",
"2023-07-02 19:03:10,774 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
"2023-07-02 19:03:10,813 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3000\n",
"2023-07-02 19:03:10,818 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8086, evaluation/loss: 1.2627, loss: 1.5492\n",
"2023-07-02 19:03:18,070 - modelscope - INFO - epoch [1][3205/4953]\tlr: 3.542e-05, memory: 9082, loss: 0.1662\n",
"2023-07-02 19:03:26,317 - modelscope - INFO - epoch [1][3210/4953]\tlr: 3.530e-05, memory: 9082, loss: 1.6430\n",
"2023-07-02 19:03:32,449 - modelscope - INFO - epoch [1][3215/4953]\tlr: 3.517e-05, memory: 9082, loss: 0.4798\n",
"2023-07-02 19:03:38,508 - modelscope - INFO - epoch [1][3220/4953]\tlr: 3.504e-05, memory: 9082, loss: 1.0096\n",
"2023-07-02 19:03:45,266 - modelscope - INFO - epoch [1][3225/4953]\tlr: 3.491e-05, memory: 9082, loss: 1.1305\n",
"2023-07-02 19:03:48,361 - modelscope - INFO - epoch [1][3230/4953]\tlr: 3.478e-05, memory: 9082, loss: 1.6721\n",
"2023-07-02 19:03:54,630 - modelscope - INFO - epoch [1][3235/4953]\tlr: 3.465e-05, memory: 9082, loss: 1.1138\n",
"2023-07-02 19:03:59,780 - modelscope - INFO - epoch [1][3240/4953]\tlr: 3.453e-05, memory: 9082, loss: 1.2146\n",
"2023-07-02 19:04:04,310 - modelscope - INFO - epoch [1][3245/4953]\tlr: 3.440e-05, memory: 9082, loss: 0.9602\n",
"2023-07-02 19:04:09,085 - modelscope - INFO - epoch [1][3250/4953]\tlr: 3.427e-05, memory: 9082, loss: 2.0369\n",
"2023-07-02 19:04:13,329 - modelscope - INFO - epoch [1][3255/4953]\tlr: 3.415e-05, memory: 9082, loss: 1.3604\n",
"2023-07-02 19:04:19,728 - modelscope - INFO - epoch [1][3260/4953]\tlr: 3.402e-05, memory: 9082, loss: 1.0500\n",
"2023-07-02 19:04:25,537 - modelscope - INFO - epoch [1][3265/4953]\tlr: 3.389e-05, memory: 9082, loss: 1.0730\n",
"2023-07-02 19:04:33,616 - modelscope - INFO - epoch [1][3270/4953]\tlr: 3.377e-05, memory: 9082, loss: 1.3219\n",
"2023-07-02 19:04:36,942 - modelscope - INFO - epoch [1][3275/4953]\tlr: 3.364e-05, memory: 9082, loss: 0.7494\n",
"2023-07-02 19:04:43,190 - modelscope - INFO - epoch [1][3280/4953]\tlr: 3.351e-05, memory: 9082, loss: 0.8293\n",
"2023-07-02 19:04:51,311 - modelscope - INFO - epoch [1][3285/4953]\tlr: 3.339e-05, memory: 9082, loss: 0.7475\n",
"2023-07-02 19:04:54,815 - modelscope - INFO - epoch [1][3290/4953]\tlr: 3.326e-05, memory: 9082, loss: 1.8000\n",
"2023-07-02 19:05:00,342 - modelscope - INFO - epoch [1][3295/4953]\tlr: 3.314e-05, memory: 9082, loss: 1.9621\n",
"2023-07-02 19:05:06,094 - modelscope - INFO - epoch [1][3300/4953]\tlr: 3.301e-05, memory: 9082, loss: 1.3162\n",
"2023-07-02 19:05:10,639 - modelscope - INFO - epoch [1][3305/4953]\tlr: 3.289e-05, memory: 9082, loss: 1.4781\n",
"2023-07-02 19:05:12,888 - modelscope - INFO - epoch [1][3310/4953]\tlr: 3.276e-05, memory: 9082, loss: 1.9320\n",
"2023-07-02 19:05:18,374 - modelscope - INFO - epoch [1][3315/4953]\tlr: 3.264e-05, memory: 9082, loss: 0.4891\n",
"2023-07-02 19:05:25,255 - modelscope - INFO - epoch [1][3320/4953]\tlr: 3.252e-05, memory: 9082, loss: 0.9572\n",
"2023-07-02 19:05:31,095 - modelscope - INFO - epoch [1][3325/4953]\tlr: 3.239e-05, memory: 9082, loss: 1.0703\n",
"2023-07-02 19:05:37,787 - modelscope - INFO - epoch [1][3330/4953]\tlr: 3.227e-05, memory: 9082, loss: 0.4883\n",
"2023-07-02 19:05:42,067 - modelscope - INFO - epoch [1][3335/4953]\tlr: 3.214e-05, memory: 9082, loss: 2.1445\n",
"2023-07-02 19:05:47,958 - modelscope - INFO - epoch [1][3340/4953]\tlr: 3.202e-05, memory: 9082, loss: 1.5414\n",
"2023-07-02 19:05:52,434 - modelscope - INFO - epoch [1][3345/4953]\tlr: 3.190e-05, memory: 9082, loss: 1.9531\n",
"2023-07-02 19:05:57,227 - modelscope - INFO - epoch [1][3350/4953]\tlr: 3.178e-05, memory: 9082, loss: 1.2508\n",
"2023-07-02 19:06:03,488 - modelscope - INFO - epoch [1][3355/4953]\tlr: 3.165e-05, memory: 9082, loss: 1.1402\n",
"2023-07-02 19:06:08,978 - modelscope - INFO - epoch [1][3360/4953]\tlr: 3.153e-05, memory: 9082, loss: 1.1211\n",
"2023-07-02 19:06:16,191 - modelscope - INFO - epoch [1][3365/4953]\tlr: 3.141e-05, memory: 9082, loss: 0.7613\n",
"2023-07-02 19:06:23,420 - modelscope - INFO - epoch [1][3370/4953]\tlr: 3.129e-05, memory: 9082, loss: 1.3293\n",
"2023-07-02 19:06:30,067 - modelscope - INFO - epoch [1][3375/4953]\tlr: 3.117e-05, memory: 9082, loss: 1.9758\n",
"2023-07-02 19:06:36,844 - modelscope - INFO - epoch [1][3380/4953]\tlr: 3.104e-05, memory: 9082, loss: 0.3589\n",
"2023-07-02 19:06:43,906 - modelscope - INFO - epoch [1][3385/4953]\tlr: 3.092e-05, memory: 9082, loss: 0.9208\n",
"2023-07-02 19:06:49,972 - modelscope - INFO - epoch [1][3390/4953]\tlr: 3.080e-05, memory: 9082, loss: 1.2713\n",
"2023-07-02 19:06:56,815 - modelscope - INFO - epoch [1][3395/4953]\tlr: 3.068e-05, memory: 9082, loss: 1.3320\n",
"2023-07-02 19:07:00,998 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:09:16,634 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
"2023-07-02 19:09:16,674 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3200_acc0.8085957169532776\n",
"2023-07-02 19:09:16,679 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
"2023-07-02 19:09:16,718 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3200\n",
"2023-07-02 19:09:16,723 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8090, evaluation/loss: 1.2532, loss: 1.3594\n",
"2023-07-02 19:09:23,967 - modelscope - INFO - epoch [1][3405/4953]\tlr: 3.044e-05, memory: 9082, loss: 1.4662\n",
"2023-07-02 19:09:27,883 - modelscope - INFO - epoch [1][3410/4953]\tlr: 3.032e-05, memory: 9082, loss: 1.6219\n",
"2023-07-02 19:09:36,612 - modelscope - INFO - epoch [1][3415/4953]\tlr: 3.020e-05, memory: 9082, loss: 0.8362\n",
"2023-07-02 19:09:43,660 - modelscope - INFO - epoch [1][3420/4953]\tlr: 3.008e-05, memory: 9082, loss: 0.5874\n",
"2023-07-02 19:09:50,318 - modelscope - INFO - epoch [1][3425/4953]\tlr: 2.996e-05, memory: 9082, loss: 0.5588\n",
"2023-07-02 19:09:55,763 - modelscope - INFO - epoch [1][3430/4953]\tlr: 2.985e-05, memory: 9082, loss: 1.5086\n",
"2023-07-02 19:10:00,017 - modelscope - INFO - epoch [1][3435/4953]\tlr: 2.973e-05, memory: 9082, loss: 1.7063\n",
"2023-07-02 19:10:04,359 - modelscope - INFO - epoch [1][3440/4953]\tlr: 2.961e-05, memory: 9082, loss: 1.0250\n",
"2023-07-02 19:10:11,212 - modelscope - INFO - epoch [1][3445/4953]\tlr: 2.949e-05, memory: 9082, loss: 1.7650\n",
"2023-07-02 19:10:18,583 - modelscope - INFO - epoch [1][3450/4953]\tlr: 2.937e-05, memory: 9082, loss: 1.0846\n",
"2023-07-02 19:10:24,668 - modelscope - INFO - epoch [1][3455/4953]\tlr: 2.926e-05, memory: 9082, loss: 0.6735\n",
"2023-07-02 19:10:29,335 - modelscope - INFO - epoch [1][3460/4953]\tlr: 2.914e-05, memory: 9082, loss: 1.6277\n",
"2023-07-02 19:10:36,188 - modelscope - INFO - epoch [1][3465/4953]\tlr: 2.902e-05, memory: 9082, loss: 0.5597\n",
"2023-07-02 19:10:40,421 - modelscope - INFO - epoch [1][3470/4953]\tlr: 2.891e-05, memory: 9082, loss: 1.6338\n",
"2023-07-02 19:10:45,436 - modelscope - INFO - epoch [1][3475/4953]\tlr: 2.879e-05, memory: 9082, loss: 1.2394\n",
"2023-07-02 19:10:51,181 - modelscope - INFO - epoch [1][3480/4953]\tlr: 2.867e-05, memory: 9082, loss: 1.4753\n",
"2023-07-02 19:10:57,524 - modelscope - INFO - epoch [1][3485/4953]\tlr: 2.856e-05, memory: 9082, loss: 0.2870\n",
"2023-07-02 19:11:04,534 - modelscope - INFO - epoch [1][3490/4953]\tlr: 2.844e-05, memory: 9082, loss: 1.1145\n",
"2023-07-02 19:11:09,939 - modelscope - INFO - epoch [1][3495/4953]\tlr: 2.833e-05, memory: 9082, loss: 1.5525\n",
"2023-07-02 19:11:16,051 - modelscope - INFO - epoch [1][3500/4953]\tlr: 2.821e-05, memory: 9082, loss: 0.9821\n",
"2023-07-02 19:11:21,112 - modelscope - INFO - epoch [1][3505/4953]\tlr: 2.810e-05, memory: 9082, loss: 0.5899\n",
"2023-07-02 19:11:26,462 - modelscope - INFO - epoch [1][3510/4953]\tlr: 2.798e-05, memory: 9082, loss: 1.0081\n",
"2023-07-02 19:11:31,458 - modelscope - INFO - epoch [1][3515/4953]\tlr: 2.787e-05, memory: 9082, loss: 1.9700\n",
"2023-07-02 19:11:36,854 - modelscope - INFO - epoch [1][3520/4953]\tlr: 2.775e-05, memory: 9082, loss: 1.4628\n",
"2023-07-02 19:11:42,492 - modelscope - INFO - epoch [1][3525/4953]\tlr: 2.764e-05, memory: 9082, loss: 2.0672\n",
"2023-07-02 19:11:46,917 - modelscope - INFO - epoch [1][3530/4953]\tlr: 2.753e-05, memory: 9082, loss: 1.2469\n",
"2023-07-02 19:11:51,730 - modelscope - INFO - epoch [1][3535/4953]\tlr: 2.741e-05, memory: 9082, loss: 1.8609\n",
"2023-07-02 19:11:58,366 - modelscope - INFO - epoch [1][3540/4953]\tlr: 2.730e-05, memory: 9082, loss: 1.0629\n",
"2023-07-02 19:12:03,036 - modelscope - INFO - epoch [1][3545/4953]\tlr: 2.719e-05, memory: 9082, loss: 1.9508\n",
"2023-07-02 19:12:07,669 - modelscope - INFO - epoch [1][3550/4953]\tlr: 2.707e-05, memory: 9082, loss: 1.1436\n",
"2023-07-02 19:12:12,567 - modelscope - INFO - epoch [1][3555/4953]\tlr: 2.696e-05, memory: 9082, loss: 1.7292\n",
"2023-07-02 19:12:18,906 - modelscope - INFO - epoch [1][3560/4953]\tlr: 2.685e-05, memory: 9082, loss: 1.4152\n",
"2023-07-02 19:12:27,058 - modelscope - INFO - epoch [1][3565/4953]\tlr: 2.674e-05, memory: 9082, loss: 1.5086\n",
"2023-07-02 19:12:34,096 - modelscope - INFO - epoch [1][3570/4953]\tlr: 2.663e-05, memory: 9082, loss: 0.4786\n",
"2023-07-02 19:12:40,666 - modelscope - INFO - epoch [1][3575/4953]\tlr: 2.652e-05, memory: 9082, loss: 1.7496\n",
"2023-07-02 19:12:47,997 - modelscope - INFO - epoch [1][3580/4953]\tlr: 2.641e-05, memory: 9082, loss: 1.0977\n",
"2023-07-02 19:12:51,897 - modelscope - INFO - epoch [1][3585/4953]\tlr: 2.630e-05, memory: 9082, loss: 1.6832\n",
"2023-07-02 19:12:59,020 - modelscope - INFO - epoch [1][3590/4953]\tlr: 2.619e-05, memory: 9082, loss: 0.4163\n",
"2023-07-02 19:13:07,038 - modelscope - INFO - epoch [1][3595/4953]\tlr: 2.608e-05, memory: 9082, loss: 0.7688\n",
"2023-07-02 19:13:13,293 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.05it/s]\n",
"2023-07-02 19:15:28,735 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
"2023-07-02 19:15:28,776 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3400_acc0.8089956045150757\n",
"2023-07-02 19:15:28,780 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
"2023-07-02 19:15:28,819 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3400\n",
"2023-07-02 19:15:28,824 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8097, evaluation/loss: 1.2494, loss: 0.8758\n",
"2023-07-02 19:15:35,336 - modelscope - INFO - epoch [1][3605/4953]\tlr: 2.586e-05, memory: 9082, loss: 0.5239\n",
"2023-07-02 19:15:41,849 - modelscope - INFO - epoch [1][3610/4953]\tlr: 2.575e-05, memory: 9082, loss: 1.5448\n",
"2023-07-02 19:15:46,600 - modelscope - INFO - epoch [1][3615/4953]\tlr: 2.564e-05, memory: 9082, loss: 1.2828\n",
"2023-07-02 19:15:53,236 - modelscope - INFO - epoch [1][3620/4953]\tlr: 2.553e-05, memory: 9082, loss: 1.3886\n",
"2023-07-02 19:15:59,060 - modelscope - INFO - epoch [1][3625/4953]\tlr: 2.542e-05, memory: 9082, loss: 1.2750\n",
"2023-07-02 19:16:04,370 - modelscope - INFO - epoch [1][3630/4953]\tlr: 2.532e-05, memory: 9082, loss: 1.0339\n",
"2023-07-02 19:16:09,908 - modelscope - INFO - epoch [1][3635/4953]\tlr: 2.521e-05, memory: 9082, loss: 1.6308\n",
"2023-07-02 19:16:16,808 - modelscope - INFO - epoch [1][3640/4953]\tlr: 2.510e-05, memory: 9082, loss: 1.2590\n",
"2023-07-02 19:16:22,072 - modelscope - INFO - epoch [1][3645/4953]\tlr: 2.500e-05, memory: 9082, loss: 2.3364\n",
"2023-07-02 19:16:29,035 - modelscope - INFO - epoch [1][3650/4953]\tlr: 2.489e-05, memory: 9082, loss: 1.1231\n",
"2023-07-02 19:16:35,184 - modelscope - INFO - epoch [1][3655/4953]\tlr: 2.478e-05, memory: 9082, loss: 0.8313\n",
"2023-07-02 19:16:41,731 - modelscope - INFO - epoch [1][3660/4953]\tlr: 2.468e-05, memory: 9082, loss: 1.2649\n",
"2023-07-02 19:16:47,773 - modelscope - INFO - epoch [1][3665/4953]\tlr: 2.457e-05, memory: 9082, loss: 0.1984\n",
"2023-07-02 19:16:53,645 - modelscope - INFO - epoch [1][3670/4953]\tlr: 2.447e-05, memory: 9082, loss: 1.2534\n",
"2023-07-02 19:16:58,300 - modelscope - INFO - epoch [1][3675/4953]\tlr: 2.436e-05, memory: 9082, loss: 1.1865\n",
"2023-07-02 19:17:02,935 - modelscope - INFO - epoch [1][3680/4953]\tlr: 2.426e-05, memory: 9082, loss: 1.0458\n",
"2023-07-02 19:17:10,508 - modelscope - INFO - epoch [1][3685/4953]\tlr: 2.415e-05, memory: 9082, loss: 1.4961\n",
"2023-07-02 19:17:15,416 - modelscope - INFO - epoch [1][3690/4953]\tlr: 2.405e-05, memory: 9082, loss: 1.9992\n",
"2023-07-02 19:17:21,634 - modelscope - INFO - epoch [1][3695/4953]\tlr: 2.394e-05, memory: 9082, loss: 1.0555\n",
"2023-07-02 19:17:25,173 - modelscope - INFO - epoch [1][3700/4953]\tlr: 2.384e-05, memory: 9082, loss: 1.3477\n",
"2023-07-02 19:17:31,506 - modelscope - INFO - epoch [1][3705/4953]\tlr: 2.374e-05, memory: 9082, loss: 1.4563\n",
"2023-07-02 19:17:37,274 - modelscope - INFO - epoch [1][3710/4953]\tlr: 2.364e-05, memory: 9082, loss: 1.0638\n",
"2023-07-02 19:17:42,368 - modelscope - INFO - epoch [1][3715/4953]\tlr: 2.353e-05, memory: 9082, loss: 1.0961\n",
"2023-07-02 19:17:48,384 - modelscope - INFO - epoch [1][3720/4953]\tlr: 2.343e-05, memory: 9082, loss: 0.6570\n",
"2023-07-02 19:17:54,584 - modelscope - INFO - epoch [1][3725/4953]\tlr: 2.333e-05, memory: 9082, loss: 1.4391\n",
"2023-07-02 19:18:00,199 - modelscope - INFO - epoch [1][3730/4953]\tlr: 2.323e-05, memory: 9082, loss: 1.0986\n",
"2023-07-02 19:18:06,613 - modelscope - INFO - epoch [1][3735/4953]\tlr: 2.313e-05, memory: 9082, loss: 1.2259\n",
"2023-07-02 19:18:11,954 - modelscope - INFO - epoch [1][3740/4953]\tlr: 2.303e-05, memory: 9082, loss: 1.2266\n",
"2023-07-02 19:18:19,245 - modelscope - INFO - epoch [1][3745/4953]\tlr: 2.293e-05, memory: 9082, loss: 0.8633\n",
"2023-07-02 19:18:24,296 - modelscope - INFO - epoch [1][3750/4953]\tlr: 2.283e-05, memory: 9082, loss: 1.2285\n",
"2023-07-02 19:18:31,793 - modelscope - INFO - epoch [1][3755/4953]\tlr: 2.273e-05, memory: 9082, loss: 1.7500\n",
"2023-07-02 19:18:37,572 - modelscope - INFO - epoch [1][3760/4953]\tlr: 2.263e-05, memory: 9082, loss: 0.6735\n",
"2023-07-02 19:18:44,200 - modelscope - INFO - epoch [1][3765/4953]\tlr: 2.253e-05, memory: 9082, loss: 1.8328\n",
"2023-07-02 19:18:49,475 - modelscope - INFO - epoch [1][3770/4953]\tlr: 2.243e-05, memory: 9082, loss: 1.3798\n",
"2023-07-02 19:18:53,690 - modelscope - INFO - epoch [1][3775/4953]\tlr: 2.233e-05, memory: 9082, loss: 2.3062\n",
"2023-07-02 19:18:58,638 - modelscope - INFO - epoch [1][3780/4953]\tlr: 2.223e-05, memory: 9082, loss: 1.1617\n",
"2023-07-02 19:19:05,096 - modelscope - INFO - epoch [1][3785/4953]\tlr: 2.213e-05, memory: 9082, loss: 1.7489\n",
"2023-07-02 19:19:12,468 - modelscope - INFO - epoch [1][3790/4953]\tlr: 2.204e-05, memory: 9082, loss: 1.1701\n",
"2023-07-02 19:19:22,097 - modelscope - INFO - epoch [1][3795/4953]\tlr: 2.194e-05, memory: 9082, loss: 0.3038\n",
"2023-07-02 19:19:29,069 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:21:44,819 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
"2023-07-02 19:21:44,859 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3600_acc0.8096736669540405\n",
"2023-07-02 19:21:44,863 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
"2023-07-02 19:21:44,902 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3600\n",
"2023-07-02 19:21:44,907 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8099, evaluation/loss: 1.2569, loss: 1.0828\n",
"2023-07-02 19:21:50,359 - modelscope - INFO - epoch [1][3805/4953]\tlr: 2.174e-05, memory: 9082, loss: 1.3383\n",
"2023-07-02 19:21:56,101 - modelscope - INFO - epoch [1][3810/4953]\tlr: 2.165e-05, memory: 9082, loss: 1.3833\n",
"2023-07-02 19:22:02,037 - modelscope - INFO - epoch [1][3815/4953]\tlr: 2.155e-05, memory: 9082, loss: 1.1005\n",
"2023-07-02 19:22:07,031 - modelscope - INFO - epoch [1][3820/4953]\tlr: 2.146e-05, memory: 9082, loss: 1.6941\n",
"2023-07-02 19:22:11,810 - modelscope - INFO - epoch [1][3825/4953]\tlr: 2.136e-05, memory: 9082, loss: 1.8938\n",
"2023-07-02 19:22:16,752 - modelscope - INFO - epoch [1][3830/4953]\tlr: 2.127e-05, memory: 9082, loss: 1.6121\n",
"2023-07-02 19:22:25,240 - modelscope - INFO - epoch [1][3835/4953]\tlr: 2.117e-05, memory: 9082, loss: 0.7009\n",
"2023-07-02 19:22:31,231 - modelscope - INFO - epoch [1][3840/4953]\tlr: 2.108e-05, memory: 9082, loss: 1.8273\n",
"2023-07-02 19:22:37,939 - modelscope - INFO - epoch [1][3845/4953]\tlr: 2.098e-05, memory: 9082, loss: 0.8680\n",
"2023-07-02 19:22:43,021 - modelscope - INFO - epoch [1][3850/4953]\tlr: 2.089e-05, memory: 9082, loss: 1.5473\n",
"2023-07-02 19:22:49,156 - modelscope - INFO - epoch [1][3855/4953]\tlr: 2.080e-05, memory: 9082, loss: 1.1435\n",
"2023-07-02 19:22:53,445 - modelscope - INFO - epoch [1][3860/4953]\tlr: 2.071e-05, memory: 9082, loss: 1.1194\n",
"2023-07-02 19:22:59,485 - modelscope - INFO - epoch [1][3865/4953]\tlr: 2.061e-05, memory: 9082, loss: 1.0640\n",
"2023-07-02 19:23:03,673 - modelscope - INFO - epoch [1][3870/4953]\tlr: 2.052e-05, memory: 9082, loss: 1.0879\n",
"2023-07-02 19:23:08,721 - modelscope - INFO - epoch [1][3875/4953]\tlr: 2.043e-05, memory: 9082, loss: 0.9207\n",
"2023-07-02 19:23:14,908 - modelscope - INFO - epoch [1][3880/4953]\tlr: 2.034e-05, memory: 9082, loss: 0.5737\n",
"2023-07-02 19:23:21,843 - modelscope - INFO - epoch [1][3885/4953]\tlr: 2.025e-05, memory: 9082, loss: 1.3052\n",
"2023-07-02 19:23:30,760 - modelscope - INFO - epoch [1][3890/4953]\tlr: 2.016e-05, memory: 9082, loss: 1.1666\n",
"2023-07-02 19:23:36,181 - modelscope - INFO - epoch [1][3895/4953]\tlr: 2.007e-05, memory: 9082, loss: 1.7224\n",
"2023-07-02 19:23:40,094 - modelscope - INFO - epoch [1][3900/4953]\tlr: 1.998e-05, memory: 9082, loss: 1.0042\n",
"2023-07-02 19:23:47,764 - modelscope - INFO - epoch [1][3905/4953]\tlr: 1.989e-05, memory: 9082, loss: 1.2044\n",
"2023-07-02 19:23:54,075 - modelscope - INFO - epoch [1][3910/4953]\tlr: 1.980e-05, memory: 9082, loss: 1.3367\n",
"2023-07-02 19:24:00,699 - modelscope - INFO - epoch [1][3915/4953]\tlr: 1.971e-05, memory: 9082, loss: 1.1395\n",
"2023-07-02 19:24:06,413 - modelscope - INFO - epoch [1][3920/4953]\tlr: 1.962e-05, memory: 9082, loss: 1.1899\n",
"2023-07-02 19:24:12,663 - modelscope - INFO - epoch [1][3925/4953]\tlr: 1.953e-05, memory: 9082, loss: 1.0320\n",
"2023-07-02 19:24:18,897 - modelscope - INFO - epoch [1][3930/4953]\tlr: 1.944e-05, memory: 9082, loss: 2.0555\n",
"2023-07-02 19:24:25,760 - modelscope - INFO - epoch [1][3935/4953]\tlr: 1.936e-05, memory: 9082, loss: 1.3466\n",
"2023-07-02 19:24:29,617 - modelscope - INFO - epoch [1][3940/4953]\tlr: 1.927e-05, memory: 9082, loss: 1.7797\n",
"2023-07-02 19:24:34,498 - modelscope - INFO - epoch [1][3945/4953]\tlr: 1.918e-05, memory: 9082, loss: 0.6168\n",
"2023-07-02 19:24:39,457 - modelscope - INFO - epoch [1][3950/4953]\tlr: 1.910e-05, memory: 9082, loss: 1.1122\n",
"2023-07-02 19:24:48,913 - modelscope - INFO - epoch [1][3955/4953]\tlr: 1.901e-05, memory: 9082, loss: 0.9353\n",
"2023-07-02 19:24:55,564 - modelscope - INFO - epoch [1][3960/4953]\tlr: 1.892e-05, memory: 9082, loss: 0.9599\n",
"2023-07-02 19:25:00,536 - modelscope - INFO - epoch [1][3965/4953]\tlr: 1.884e-05, memory: 9082, loss: 1.4582\n",
"2023-07-02 19:25:07,894 - modelscope - INFO - epoch [1][3970/4953]\tlr: 1.875e-05, memory: 9082, loss: 1.0347\n",
"2023-07-02 19:25:11,877 - modelscope - INFO - epoch [1][3975/4953]\tlr: 1.867e-05, memory: 9082, loss: 1.9000\n",
"2023-07-02 19:25:18,225 - modelscope - INFO - epoch [1][3980/4953]\tlr: 1.858e-05, memory: 9082, loss: 1.4125\n",
"2023-07-02 19:25:22,417 - modelscope - INFO - epoch [1][3985/4953]\tlr: 1.850e-05, memory: 9082, loss: 1.8959\n",
"2023-07-02 19:25:27,100 - modelscope - INFO - epoch [1][3990/4953]\tlr: 1.842e-05, memory: 9082, loss: 1.4008\n",
"2023-07-02 19:25:31,958 - modelscope - INFO - epoch [1][3995/4953]\tlr: 1.833e-05, memory: 9082, loss: 0.8114\n",
"2023-07-02 19:25:37,042 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:27:53,013 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
"2023-07-02 19:27:53,054 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_3800\n",
"2023-07-02 19:27:53,059 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8099, evaluation/loss: 1.2522, loss: 1.1221\n",
"2023-07-02 19:27:58,830 - modelscope - INFO - epoch [1][4005/4953]\tlr: 1.817e-05, memory: 9082, loss: 1.9461\n",
"2023-07-02 19:28:04,138 - modelscope - INFO - epoch [1][4010/4953]\tlr: 1.809e-05, memory: 9082, loss: 1.5629\n",
"2023-07-02 19:28:09,984 - modelscope - INFO - epoch [1][4015/4953]\tlr: 1.801e-05, memory: 9082, loss: 0.7642\n",
"2023-07-02 19:28:13,463 - modelscope - INFO - epoch [1][4020/4953]\tlr: 1.792e-05, memory: 9082, loss: 2.2344\n",
"2023-07-02 19:28:20,355 - modelscope - INFO - epoch [1][4025/4953]\tlr: 1.784e-05, memory: 9082, loss: 0.9662\n",
"2023-07-02 19:28:26,276 - modelscope - INFO - epoch [1][4030/4953]\tlr: 1.776e-05, memory: 9082, loss: 1.0925\n",
"2023-07-02 19:28:32,273 - modelscope - INFO - epoch [1][4035/4953]\tlr: 1.768e-05, memory: 9082, loss: 1.4812\n",
"2023-07-02 19:28:38,431 - modelscope - INFO - epoch [1][4040/4953]\tlr: 1.760e-05, memory: 9082, loss: 2.1295\n",
"2023-07-02 19:28:43,468 - modelscope - INFO - epoch [1][4045/4953]\tlr: 1.752e-05, memory: 9082, loss: 1.6391\n",
"2023-07-02 19:28:51,453 - modelscope - INFO - epoch [1][4050/4953]\tlr: 1.744e-05, memory: 9082, loss: 1.4901\n",
"2023-07-02 19:28:57,688 - modelscope - INFO - epoch [1][4055/4953]\tlr: 1.737e-05, memory: 9082, loss: 1.2383\n",
"2023-07-02 19:29:01,776 - modelscope - INFO - epoch [1][4060/4953]\tlr: 1.729e-05, memory: 9082, loss: 1.4404\n",
"2023-07-02 19:29:07,738 - modelscope - INFO - epoch [1][4065/4953]\tlr: 1.721e-05, memory: 9082, loss: 0.5664\n",
"2023-07-02 19:29:12,827 - modelscope - INFO - epoch [1][4070/4953]\tlr: 1.713e-05, memory: 9082, loss: 1.4554\n",
"2023-07-02 19:29:19,309 - modelscope - INFO - epoch [1][4075/4953]\tlr: 1.706e-05, memory: 9082, loss: 0.8976\n",
"2023-07-02 19:29:23,218 - modelscope - INFO - epoch [1][4080/4953]\tlr: 1.698e-05, memory: 9082, loss: 1.0562\n",
"2023-07-02 19:29:32,543 - modelscope - INFO - epoch [1][4085/4953]\tlr: 1.690e-05, memory: 9082, loss: 0.9514\n",
"2023-07-02 19:29:39,285 - modelscope - INFO - epoch [1][4090/4953]\tlr: 1.683e-05, memory: 9082, loss: 0.4714\n",
"2023-07-02 19:29:44,617 - modelscope - INFO - epoch [1][4095/4953]\tlr: 1.675e-05, memory: 9082, loss: 1.2211\n",
"2023-07-02 19:29:49,645 - modelscope - INFO - epoch [1][4100/4953]\tlr: 1.668e-05, memory: 9082, loss: 2.0924\n",
"2023-07-02 19:29:55,362 - modelscope - INFO - epoch [1][4105/4953]\tlr: 1.660e-05, memory: 9082, loss: 2.2705\n",
"2023-07-02 19:30:01,166 - modelscope - INFO - epoch [1][4110/4953]\tlr: 1.653e-05, memory: 9082, loss: 1.6148\n",
"2023-07-02 19:30:08,386 - modelscope - INFO - epoch [1][4115/4953]\tlr: 1.645e-05, memory: 9082, loss: 0.4558\n",
"2023-07-02 19:30:15,808 - modelscope - INFO - epoch [1][4120/4953]\tlr: 1.638e-05, memory: 9082, loss: 1.3715\n",
"2023-07-02 19:30:21,186 - modelscope - INFO - epoch [1][4125/4953]\tlr: 1.631e-05, memory: 9082, loss: 1.4497\n",
"2023-07-02 19:30:26,639 - modelscope - INFO - epoch [1][4130/4953]\tlr: 1.623e-05, memory: 9082, loss: 1.0819\n",
"2023-07-02 19:30:32,756 - modelscope - INFO - epoch [1][4135/4953]\tlr: 1.616e-05, memory: 9082, loss: 0.5440\n",
"2023-07-02 19:30:39,286 - modelscope - INFO - epoch [1][4140/4953]\tlr: 1.609e-05, memory: 9082, loss: 1.7625\n",
"2023-07-02 19:30:45,148 - modelscope - INFO - epoch [1][4145/4953]\tlr: 1.602e-05, memory: 9082, loss: 1.4341\n",
"2023-07-02 19:30:49,574 - modelscope - INFO - epoch [1][4150/4953]\tlr: 1.595e-05, memory: 9082, loss: 1.2615\n",
"2023-07-02 19:30:56,310 - modelscope - INFO - epoch [1][4155/4953]\tlr: 1.588e-05, memory: 9082, loss: 1.1409\n",
"2023-07-02 19:31:00,158 - modelscope - INFO - epoch [1][4160/4953]\tlr: 1.580e-05, memory: 9082, loss: 1.3609\n",
"2023-07-02 19:31:06,731 - modelscope - INFO - epoch [1][4165/4953]\tlr: 1.573e-05, memory: 9082, loss: 1.5992\n",
"2023-07-02 19:31:10,582 - modelscope - INFO - epoch [1][4170/4953]\tlr: 1.566e-05, memory: 9082, loss: 1.2750\n",
"2023-07-02 19:31:17,613 - modelscope - INFO - epoch [1][4175/4953]\tlr: 1.560e-05, memory: 9082, loss: 1.5521\n",
"2023-07-02 19:31:21,814 - modelscope - INFO - epoch [1][4180/4953]\tlr: 1.553e-05, memory: 9082, loss: 2.2871\n",
"2023-07-02 19:31:28,108 - modelscope - INFO - epoch [1][4185/4953]\tlr: 1.546e-05, memory: 9082, loss: 1.4199\n",
"2023-07-02 19:31:31,428 - modelscope - INFO - epoch [1][4190/4953]\tlr: 1.539e-05, memory: 9082, loss: 1.6801\n",
"2023-07-02 19:31:36,958 - modelscope - INFO - epoch [1][4195/4953]\tlr: 1.532e-05, memory: 9082, loss: 1.2423\n",
"2023-07-02 19:31:43,408 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.04it/s]\n",
"2023-07-02 19:33:59,477 - modelscope - INFO - Saving checkpoint at 4200 iter\n",
"2023-07-02 19:33:59,518 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4000\n",
"2023-07-02 19:33:59,522 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8095, evaluation/loss: 1.2465, loss: 1.5236\n",
"2023-07-02 19:34:03,568 - modelscope - INFO - epoch [1][4205/4953]\tlr: 1.519e-05, memory: 9082, loss: 1.0014\n",
"2023-07-02 19:34:10,609 - modelscope - INFO - epoch [1][4210/4953]\tlr: 1.512e-05, memory: 9082, loss: 0.5158\n",
"2023-07-02 19:34:17,669 - modelscope - INFO - epoch [1][4215/4953]\tlr: 1.506e-05, memory: 9082, loss: 1.1637\n",
"2023-07-02 19:34:24,176 - modelscope - INFO - epoch [1][4220/4953]\tlr: 1.499e-05, memory: 9082, loss: 0.9216\n",
"2023-07-02 19:34:30,303 - modelscope - INFO - epoch [1][4225/4953]\tlr: 1.492e-05, memory: 9082, loss: 0.5468\n",
"2023-07-02 19:34:36,913 - modelscope - INFO - epoch [1][4230/4953]\tlr: 1.486e-05, memory: 9082, loss: 1.0229\n",
"2023-07-02 19:34:42,449 - modelscope - INFO - epoch [1][4235/4953]\tlr: 1.480e-05, memory: 9082, loss: 0.8887\n",
"2023-07-02 19:34:51,187 - modelscope - INFO - epoch [1][4240/4953]\tlr: 1.473e-05, memory: 9082, loss: 1.1398\n",
"2023-07-02 19:34:55,850 - modelscope - INFO - epoch [1][4245/4953]\tlr: 1.467e-05, memory: 9082, loss: 1.8500\n",
"2023-07-02 19:35:01,653 - modelscope - INFO - epoch [1][4250/4953]\tlr: 1.460e-05, memory: 9082, loss: 1.2860\n",
"2023-07-02 19:35:07,538 - modelscope - INFO - epoch [1][4255/4953]\tlr: 1.454e-05, memory: 9082, loss: 0.9241\n",
"2023-07-02 19:35:10,832 - modelscope - INFO - epoch [1][4260/4953]\tlr: 1.448e-05, memory: 9082, loss: 1.5016\n",
"2023-07-02 19:35:15,940 - modelscope - INFO - epoch [1][4265/4953]\tlr: 1.442e-05, memory: 9082, loss: 1.1250\n",
"2023-07-02 19:35:21,080 - modelscope - INFO - epoch [1][4270/4953]\tlr: 1.436e-05, memory: 9082, loss: 1.0505\n",
"2023-07-02 19:35:26,817 - modelscope - INFO - epoch [1][4275/4953]\tlr: 1.429e-05, memory: 9082, loss: 1.0356\n",
"2023-07-02 19:35:36,012 - modelscope - INFO - epoch [1][4280/4953]\tlr: 1.423e-05, memory: 9082, loss: 0.9335\n",
"2023-07-02 19:35:42,237 - modelscope - INFO - epoch [1][4285/4953]\tlr: 1.417e-05, memory: 9082, loss: 0.5855\n",
"2023-07-02 19:35:46,223 - modelscope - INFO - epoch [1][4290/4953]\tlr: 1.411e-05, memory: 9082, loss: 1.2945\n",
"2023-07-02 19:35:52,610 - modelscope - INFO - epoch [1][4295/4953]\tlr: 1.405e-05, memory: 9082, loss: 0.9766\n",
"2023-07-02 19:35:59,125 - modelscope - INFO - epoch [1][4300/4953]\tlr: 1.400e-05, memory: 9082, loss: 1.6789\n",
"2023-07-02 19:36:03,214 - modelscope - INFO - epoch [1][4305/4953]\tlr: 1.394e-05, memory: 9082, loss: 1.5262\n",
"2023-07-02 19:36:08,897 - modelscope - INFO - epoch [1][4310/4953]\tlr: 1.388e-05, memory: 9082, loss: 1.0785\n",
"2023-07-02 19:36:15,128 - modelscope - INFO - epoch [1][4315/4953]\tlr: 1.382e-05, memory: 9082, loss: 0.6479\n",
"2023-07-02 19:36:21,607 - modelscope - INFO - epoch [1][4320/4953]\tlr: 1.376e-05, memory: 9082, loss: 1.8496\n",
"2023-07-02 19:36:29,617 - modelscope - INFO - epoch [1][4325/4953]\tlr: 1.371e-05, memory: 9082, loss: 0.5391\n",
"2023-07-02 19:36:35,101 - modelscope - INFO - epoch [1][4330/4953]\tlr: 1.365e-05, memory: 9082, loss: 1.8141\n",
"2023-07-02 19:36:41,579 - modelscope - INFO - epoch [1][4335/4953]\tlr: 1.359e-05, memory: 9082, loss: 0.6881\n",
"2023-07-02 19:36:48,569 - modelscope - INFO - epoch [1][4340/4953]\tlr: 1.354e-05, memory: 9082, loss: 0.6677\n",
"2023-07-02 19:36:55,362 - modelscope - INFO - epoch [1][4345/4953]\tlr: 1.348e-05, memory: 9082, loss: 0.7067\n",
"2023-07-02 19:37:01,199 - modelscope - INFO - epoch [1][4350/4953]\tlr: 1.343e-05, memory: 9082, loss: 1.3036\n",
"2023-07-02 19:37:06,752 - modelscope - INFO - epoch [1][4355/4953]\tlr: 1.337e-05, memory: 9082, loss: 0.5832\n",
"2023-07-02 19:37:11,013 - modelscope - INFO - epoch [1][4360/4953]\tlr: 1.332e-05, memory: 9082, loss: 0.9969\n",
"2023-07-02 19:37:15,110 - modelscope - INFO - epoch [1][4365/4953]\tlr: 1.326e-05, memory: 9082, loss: 1.6590\n",
"2023-07-02 19:37:22,411 - modelscope - INFO - epoch [1][4370/4953]\tlr: 1.321e-05, memory: 9082, loss: 0.8229\n",
"2023-07-02 19:37:29,106 - modelscope - INFO - epoch [1][4375/4953]\tlr: 1.316e-05, memory: 9082, loss: 1.3289\n",
"2023-07-02 19:37:33,326 - modelscope - INFO - epoch [1][4380/4953]\tlr: 1.311e-05, memory: 9082, loss: 1.0410\n",
"2023-07-02 19:37:38,513 - modelscope - INFO - epoch [1][4385/4953]\tlr: 1.305e-05, memory: 9082, loss: 0.6374\n",
"2023-07-02 19:37:42,903 - modelscope - INFO - epoch [1][4390/4953]\tlr: 1.300e-05, memory: 9082, loss: 2.6094\n",
"2023-07-02 19:37:46,474 - modelscope - INFO - epoch [1][4395/4953]\tlr: 1.295e-05, memory: 9082, loss: 1.7327\n",
"2023-07-02 19:37:53,357 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:16<00:00, 2.03it/s]\n",
"2023-07-02 19:40:09,626 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
"2023-07-02 19:40:09,667 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter3800_acc0.8098996877670288\n",
"2023-07-02 19:40:09,672 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
"2023-07-02 19:40:09,712 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4200\n",
"2023-07-02 19:40:09,717 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8100, evaluation/loss: 1.2437, loss: 1.0930\n",
"2023-07-02 19:40:15,785 - modelscope - INFO - epoch [1][4405/4953]\tlr: 1.285e-05, memory: 9082, loss: 0.5974\n",
"2023-07-02 19:40:23,144 - modelscope - INFO - epoch [1][4410/4953]\tlr: 1.280e-05, memory: 9082, loss: 1.0870\n",
"2023-07-02 19:40:28,966 - modelscope - INFO - epoch [1][4415/4953]\tlr: 1.275e-05, memory: 9082, loss: 1.0536\n",
"2023-07-02 19:40:35,092 - modelscope - INFO - epoch [1][4420/4953]\tlr: 1.270e-05, memory: 9082, loss: 1.4613\n",
"2023-07-02 19:40:41,826 - modelscope - INFO - epoch [1][4425/4953]\tlr: 1.265e-05, memory: 9082, loss: 0.8297\n",
"2023-07-02 19:40:46,568 - modelscope - INFO - epoch [1][4430/4953]\tlr: 1.261e-05, memory: 9082, loss: 2.0414\n",
"2023-07-02 19:40:53,278 - modelscope - INFO - epoch [1][4435/4953]\tlr: 1.256e-05, memory: 9082, loss: 1.1800\n",
"2023-07-02 19:40:58,208 - modelscope - INFO - epoch [1][4440/4953]\tlr: 1.251e-05, memory: 9082, loss: 0.8595\n",
"2023-07-02 19:41:04,905 - modelscope - INFO - epoch [1][4445/4953]\tlr: 1.246e-05, memory: 9082, loss: 0.0801\n",
"2023-07-02 19:41:08,125 - modelscope - INFO - epoch [1][4450/4953]\tlr: 1.242e-05, memory: 9082, loss: 1.7031\n",
"2023-07-02 19:41:13,374 - modelscope - INFO - epoch [1][4455/4953]\tlr: 1.237e-05, memory: 9082, loss: 1.8381\n",
"2023-07-02 19:41:17,994 - modelscope - INFO - epoch [1][4460/4953]\tlr: 1.233e-05, memory: 9082, loss: 1.1123\n",
"2023-07-02 19:41:21,181 - modelscope - INFO - epoch [1][4465/4953]\tlr: 1.228e-05, memory: 9082, loss: 2.0922\n",
"2023-07-02 19:41:27,252 - modelscope - INFO - epoch [1][4470/4953]\tlr: 1.224e-05, memory: 9082, loss: 0.8977\n",
"2023-07-02 19:41:31,600 - modelscope - INFO - epoch [1][4475/4953]\tlr: 1.219e-05, memory: 9082, loss: 0.9191\n",
"2023-07-02 19:41:36,554 - modelscope - INFO - epoch [1][4480/4953]\tlr: 1.215e-05, memory: 9082, loss: 1.9734\n",
"2023-07-02 19:41:42,916 - modelscope - INFO - epoch [1][4485/4953]\tlr: 1.210e-05, memory: 9082, loss: 0.7236\n",
"2023-07-02 19:41:49,532 - modelscope - INFO - epoch [1][4490/4953]\tlr: 1.206e-05, memory: 9082, loss: 1.5750\n",
"2023-07-02 19:41:55,282 - modelscope - INFO - epoch [1][4495/4953]\tlr: 1.202e-05, memory: 9082, loss: 0.9306\n",
"2023-07-02 19:42:01,377 - modelscope - INFO - epoch [1][4500/4953]\tlr: 1.198e-05, memory: 9082, loss: 1.9801\n",
"2023-07-02 19:42:05,379 - modelscope - INFO - epoch [1][4505/4953]\tlr: 1.193e-05, memory: 9082, loss: 2.3320\n",
"2023-07-02 19:42:11,849 - modelscope - INFO - epoch [1][4510/4953]\tlr: 1.189e-05, memory: 9082, loss: 1.3637\n",
"2023-07-02 19:42:18,695 - modelscope - INFO - epoch [1][4515/4953]\tlr: 1.185e-05, memory: 9082, loss: 1.5328\n",
"2023-07-02 19:42:26,045 - modelscope - INFO - epoch [1][4520/4953]\tlr: 1.181e-05, memory: 9082, loss: 1.0721\n",
"2023-07-02 19:42:32,060 - modelscope - INFO - epoch [1][4525/4953]\tlr: 1.177e-05, memory: 9082, loss: 1.1867\n",
"2023-07-02 19:42:38,307 - modelscope - INFO - epoch [1][4530/4953]\tlr: 1.173e-05, memory: 9082, loss: 1.3500\n",
"2023-07-02 19:42:46,137 - modelscope - INFO - epoch [1][4535/4953]\tlr: 1.169e-05, memory: 9082, loss: 0.7637\n",
"2023-07-02 19:42:52,814 - modelscope - INFO - epoch [1][4540/4953]\tlr: 1.165e-05, memory: 9082, loss: 0.8551\n",
"2023-07-02 19:43:00,111 - modelscope - INFO - epoch [1][4545/4953]\tlr: 1.162e-05, memory: 9082, loss: 1.3265\n",
"2023-07-02 19:43:06,301 - modelscope - INFO - epoch [1][4550/4953]\tlr: 1.158e-05, memory: 9082, loss: 0.6115\n",
"2023-07-02 19:43:10,926 - modelscope - INFO - epoch [1][4555/4953]\tlr: 1.154e-05, memory: 9082, loss: 1.8475\n",
"2023-07-02 19:43:17,954 - modelscope - INFO - epoch [1][4560/4953]\tlr: 1.150e-05, memory: 9082, loss: 1.3332\n",
"2023-07-02 19:43:22,493 - modelscope - INFO - epoch [1][4565/4953]\tlr: 1.147e-05, memory: 9082, loss: 1.9062\n",
"2023-07-02 19:43:28,213 - modelscope - INFO - epoch [1][4570/4953]\tlr: 1.143e-05, memory: 9082, loss: 0.6227\n",
"2023-07-02 19:43:34,862 - modelscope - INFO - epoch [1][4575/4953]\tlr: 1.140e-05, memory: 9082, loss: 0.7937\n",
"2023-07-02 19:43:40,905 - modelscope - INFO - epoch [1][4580/4953]\tlr: 1.136e-05, memory: 9082, loss: 1.4903\n",
"2023-07-02 19:43:47,007 - modelscope - INFO - epoch [1][4585/4953]\tlr: 1.133e-05, memory: 9082, loss: 1.0449\n",
"2023-07-02 19:43:52,730 - modelscope - INFO - epoch [1][4590/4953]\tlr: 1.129e-05, memory: 9082, loss: 1.0068\n",
"2023-07-02 19:43:56,715 - modelscope - INFO - epoch [1][4595/4953]\tlr: 1.126e-05, memory: 9082, loss: 1.5157\n",
"2023-07-02 19:44:04,629 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:46:20,481 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
"2023-07-02 19:46:20,521 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4400\n",
"2023-07-02 19:46:20,526 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8098, evaluation/loss: 1.2390, loss: 1.1334\n",
"2023-07-02 19:46:25,140 - modelscope - INFO - epoch [1][4605/4953]\tlr: 1.119e-05, memory: 9082, loss: 1.6938\n",
"2023-07-02 19:46:30,413 - modelscope - INFO - epoch [1][4610/4953]\tlr: 1.116e-05, memory: 9082, loss: 2.1351\n",
"2023-07-02 19:46:37,216 - modelscope - INFO - epoch [1][4615/4953]\tlr: 1.113e-05, memory: 9082, loss: 0.9270\n",
"2023-07-02 19:46:43,728 - modelscope - INFO - epoch [1][4620/4953]\tlr: 1.110e-05, memory: 9082, loss: 1.1201\n",
"2023-07-02 19:46:50,227 - modelscope - INFO - epoch [1][4625/4953]\tlr: 1.107e-05, memory: 9082, loss: 1.2715\n",
"2023-07-02 19:46:53,772 - modelscope - INFO - epoch [1][4630/4953]\tlr: 1.103e-05, memory: 9082, loss: 1.4461\n",
"2023-07-02 19:46:59,663 - modelscope - INFO - epoch [1][4635/4953]\tlr: 1.100e-05, memory: 9082, loss: 1.2715\n",
"2023-07-02 19:47:06,614 - modelscope - INFO - epoch [1][4640/4953]\tlr: 1.097e-05, memory: 9082, loss: 0.6478\n",
"2023-07-02 19:47:14,999 - modelscope - INFO - epoch [1][4645/4953]\tlr: 1.094e-05, memory: 9082, loss: 1.0031\n",
"2023-07-02 19:47:19,690 - modelscope - INFO - epoch [1][4650/4953]\tlr: 1.092e-05, memory: 9082, loss: 1.0572\n",
"2023-07-02 19:47:27,827 - modelscope - INFO - epoch [1][4655/4953]\tlr: 1.089e-05, memory: 9082, loss: 0.9459\n",
"2023-07-02 19:47:33,520 - modelscope - INFO - epoch [1][4660/4953]\tlr: 1.086e-05, memory: 9082, loss: 0.9813\n",
"2023-07-02 19:47:39,880 - modelscope - INFO - epoch [1][4665/4953]\tlr: 1.083e-05, memory: 9082, loss: 1.3258\n",
"2023-07-02 19:47:46,513 - modelscope - INFO - epoch [1][4670/4953]\tlr: 1.080e-05, memory: 9082, loss: 1.2884\n",
"2023-07-02 19:47:51,769 - modelscope - INFO - epoch [1][4675/4953]\tlr: 1.078e-05, memory: 9082, loss: 1.6375\n",
"2023-07-02 19:47:57,474 - modelscope - INFO - epoch [1][4680/4953]\tlr: 1.075e-05, memory: 9082, loss: 0.9726\n",
"2023-07-02 19:48:02,354 - modelscope - INFO - epoch [1][4685/4953]\tlr: 1.073e-05, memory: 9082, loss: 1.1402\n",
"2023-07-02 19:48:09,946 - modelscope - INFO - epoch [1][4690/4953]\tlr: 1.070e-05, memory: 9082, loss: 0.9941\n",
"2023-07-02 19:48:16,660 - modelscope - INFO - epoch [1][4695/4953]\tlr: 1.068e-05, memory: 9082, loss: 1.5975\n",
"2023-07-02 19:48:22,892 - modelscope - INFO - epoch [1][4700/4953]\tlr: 1.065e-05, memory: 9082, loss: 0.9816\n",
"2023-07-02 19:48:28,221 - modelscope - INFO - epoch [1][4705/4953]\tlr: 1.063e-05, memory: 9082, loss: 0.9115\n",
"2023-07-02 19:48:35,152 - modelscope - INFO - epoch [1][4710/4953]\tlr: 1.060e-05, memory: 9082, loss: 1.4184\n",
"2023-07-02 19:48:40,666 - modelscope - INFO - epoch [1][4715/4953]\tlr: 1.058e-05, memory: 9082, loss: 1.6391\n",
"2023-07-02 19:48:46,682 - modelscope - INFO - epoch [1][4720/4953]\tlr: 1.056e-05, memory: 9082, loss: 2.1836\n",
"2023-07-02 19:48:53,274 - modelscope - INFO - epoch [1][4725/4953]\tlr: 1.054e-05, memory: 9082, loss: 1.1783\n",
"2023-07-02 19:48:56,851 - modelscope - INFO - epoch [1][4730/4953]\tlr: 1.051e-05, memory: 9082, loss: 1.0398\n",
"2023-07-02 19:49:03,951 - modelscope - INFO - epoch [1][4735/4953]\tlr: 1.049e-05, memory: 9082, loss: 0.4896\n",
"2023-07-02 19:49:09,418 - modelscope - INFO - epoch [1][4740/4953]\tlr: 1.047e-05, memory: 9082, loss: 0.8757\n",
"2023-07-02 19:49:15,768 - modelscope - INFO - epoch [1][4745/4953]\tlr: 1.045e-05, memory: 9082, loss: 1.5896\n",
"2023-07-02 19:49:21,308 - modelscope - INFO - epoch [1][4750/4953]\tlr: 1.043e-05, memory: 9082, loss: 1.3535\n",
"2023-07-02 19:49:27,455 - modelscope - INFO - epoch [1][4755/4953]\tlr: 1.041e-05, memory: 9082, loss: 1.3389\n",
"2023-07-02 19:49:34,436 - modelscope - INFO - epoch [1][4760/4953]\tlr: 1.039e-05, memory: 9082, loss: 0.6073\n",
"2023-07-02 19:49:42,538 - modelscope - INFO - epoch [1][4765/4953]\tlr: 1.037e-05, memory: 9082, loss: 0.6708\n",
"2023-07-02 19:49:49,238 - modelscope - INFO - epoch [1][4770/4953]\tlr: 1.036e-05, memory: 9082, loss: 0.8630\n",
"2023-07-02 19:49:55,165 - modelscope - INFO - epoch [1][4775/4953]\tlr: 1.034e-05, memory: 9082, loss: 0.7835\n",
"2023-07-02 19:50:01,434 - modelscope - INFO - epoch [1][4780/4953]\tlr: 1.032e-05, memory: 9082, loss: 1.7195\n",
"2023-07-02 19:50:08,788 - modelscope - INFO - epoch [1][4785/4953]\tlr: 1.030e-05, memory: 9082, loss: 1.1434\n",
"2023-07-02 19:50:14,523 - modelscope - INFO - epoch [1][4790/4953]\tlr: 1.029e-05, memory: 9082, loss: 0.6416\n",
"2023-07-02 19:50:21,717 - modelscope - INFO - epoch [1][4795/4953]\tlr: 1.027e-05, memory: 9082, loss: 1.0909\n",
"2023-07-02 19:50:25,524 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
"Total test samples: 100%|██████████| 277/277 [02:15<00:00, 2.04it/s]\n",
"2023-07-02 19:52:41,308 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
"2023-07-02 19:52:41,348 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/best_iter4400_acc0.8100214004516602\n",
"2023-07-02 19:52:41,353 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
"2023-07-02 19:52:41,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4600\n",
"2023-07-02 19:52:41,397 - modelscope - INFO - epoch(eval) [1][277]\tmemory: 9082, evaluation/acc: 0.8101, evaluation/loss: 1.2370, loss: 1.1855\n",
"2023-07-02 19:52:47,709 - modelscope - INFO - epoch [1][4805/4953]\tlr: 1.024e-05, memory: 9082, loss: 0.8004\n",
"2023-07-02 19:52:53,162 - modelscope - INFO - epoch [1][4810/4953]\tlr: 1.023e-05, memory: 9082, loss: 1.1193\n",
"2023-07-02 19:53:00,428 - modelscope - INFO - epoch [1][4815/4953]\tlr: 1.021e-05, memory: 9082, loss: 0.8555\n",
"2023-07-02 19:53:03,760 - modelscope - INFO - epoch [1][4820/4953]\tlr: 1.020e-05, memory: 9082, loss: 1.4422\n",
"2023-07-02 19:53:09,302 - modelscope - INFO - epoch [1][4825/4953]\tlr: 1.019e-05, memory: 9082, loss: 1.5247\n",
"2023-07-02 19:53:17,785 - modelscope - INFO - epoch [1][4830/4953]\tlr: 1.017e-05, memory: 9082, loss: 0.5462\n",
"2023-07-02 19:53:24,406 - modelscope - INFO - epoch [1][4835/4953]\tlr: 1.016e-05, memory: 9082, loss: 1.0023\n",
"2023-07-02 19:53:29,386 - modelscope - INFO - epoch [1][4840/4953]\tlr: 1.015e-05, memory: 9082, loss: 1.3645\n",
"2023-07-02 19:53:34,231 - modelscope - INFO - epoch [1][4845/4953]\tlr: 1.014e-05, memory: 9082, loss: 0.9927\n",
"2023-07-02 19:53:40,558 - modelscope - INFO - epoch [1][4850/4953]\tlr: 1.013e-05, memory: 9082, loss: 2.0516\n",
"2023-07-02 19:53:47,846 - modelscope - INFO - epoch [1][4855/4953]\tlr: 1.012e-05, memory: 9082, loss: 0.7750\n",
"2023-07-02 19:53:52,341 - modelscope - INFO - epoch [1][4860/4953]\tlr: 1.011e-05, memory: 9082, loss: 1.4390\n",
"2023-07-02 19:53:57,172 - modelscope - INFO - epoch [1][4865/4953]\tlr: 1.010e-05, memory: 9082, loss: 1.0197\n",
"2023-07-02 19:54:02,776 - modelscope - INFO - epoch [1][4870/4953]\tlr: 1.009e-05, memory: 9082, loss: 0.7660\n",
"2023-07-02 19:54:08,311 - modelscope - INFO - epoch [1][4875/4953]\tlr: 1.008e-05, memory: 9082, loss: 0.8775\n",
"2023-07-02 19:54:14,394 - modelscope - INFO - epoch [1][4880/4953]\tlr: 1.007e-05, memory: 9082, loss: 1.3374\n",
"2023-07-02 19:54:20,602 - modelscope - INFO - epoch [1][4885/4953]\tlr: 1.006e-05, memory: 9082, loss: 1.0018\n",
"2023-07-02 19:54:28,123 - modelscope - INFO - epoch [1][4890/4953]\tlr: 1.006e-05, memory: 9082, loss: 1.4156\n",
"2023-07-02 19:54:34,101 - modelscope - INFO - epoch [1][4895/4953]\tlr: 1.005e-05, memory: 9082, loss: 1.4742\n",
"2023-07-02 19:54:39,802 - modelscope - INFO - epoch [1][4900/4953]\tlr: 1.004e-05, memory: 9082, loss: 1.2737\n",
"2023-07-02 19:54:45,785 - modelscope - INFO - epoch [1][4905/4953]\tlr: 1.004e-05, memory: 9082, loss: 1.2928\n",
"2023-07-02 19:54:52,274 - modelscope - INFO - epoch [1][4910/4953]\tlr: 1.003e-05, memory: 9082, loss: 0.9859\n",
"2023-07-02 19:54:57,409 - modelscope - INFO - epoch [1][4915/4953]\tlr: 1.003e-05, memory: 9082, loss: 1.8160\n",
"2023-07-02 19:55:04,217 - modelscope - INFO - epoch [1][4920/4953]\tlr: 1.002e-05, memory: 9082, loss: 0.9310\n",
"2023-07-02 19:55:09,704 - modelscope - INFO - epoch [1][4925/4953]\tlr: 1.002e-05, memory: 9082, loss: 1.1717\n",
"2023-07-02 19:55:15,079 - modelscope - INFO - epoch [1][4930/4953]\tlr: 1.001e-05, memory: 9082, loss: 1.8821\n",
"2023-07-02 19:55:19,843 - modelscope - INFO - epoch [1][4935/4953]\tlr: 1.001e-05, memory: 9082, loss: 0.7700\n",
"2023-07-02 19:55:24,826 - modelscope - INFO - epoch [1][4940/4953]\tlr: 1.001e-05, memory: 9082, loss: 1.1562\n",
"2023-07-02 19:55:29,831 - modelscope - INFO - epoch [1][4945/4953]\tlr: 1.000e-05, memory: 9082, loss: 1.2777\n",
"2023-07-02 19:55:34,919 - modelscope - INFO - epoch [1][4950/4953]\tlr: 1.000e-05, memory: 9082, loss: 0.9414\n",
"2023-07-02 19:55:38,429 - modelscope - INFO - Saving checkpoint at 4953 iter\n",
"2023-07-02 19:55:38,697 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449/iter_4800\n",
"2023-07-02 19:55:38,741 - modelscope - INFO - Train finished. Uploading models, waiting...\n",
"2023-07-02 19:55:38,823 - modelscope - INFO - {'done': True}\n"
]
}
],
"source": [
"def cfg_modify_fn(cfg: Config) -> Config:\n",
" cfg.update(CONFIG)\n",
" return cfg\n",
"\n",
"\n",
"trainer = EpochBasedTrainer(\n",
" model=model,\n",
" cfg_file=cfg_file,\n",
" data_collator=data_collate_fn,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=val_dataset,\n",
" remove_unused_data=True,\n",
" seed=42,\n",
" cfg_modify_fn=cfg_modify_fn,\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 可视化\n",
"tensorboard 命令: (e.g.) \n",
"`tensorboard --logdir /home/hackathon/my_git/agent/runs/baichuan/v10-20230702-172449 --port 6006`"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['lr', 'loss', 'evaluation/acc', 'evaluation/loss'])\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAHDCAYAAACXsvqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbJ0lEQVR4nO2dd7wkVZ32n+6b79w8d+7kRBokzJBhBEyMjogCLrqIqCy6uiiYcFfFzPrquPqur+ICsgZwdQUxoIgEiYNkGEDCwJAm53Rzvl3vH78+XaeqK3d1fr6fz0zfrq46dSo/9UsnYRiGAUIIIYQQQkKSLHYHCCGEEEJIeUIhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghhBBCIkEhSQghaa677jokEgls2LCh2F0hhJCygEKSEEIIIYREgkKSEEIIIYREgkKSEEIIIYREgkKSEEI8uOqqq3D44YejoaEBc+bMwcUXX4ze3l7LPC+//DLOOecczJo1C42NjZg3bx7e9773oa+vLzPPnXfeiVNOOQUdHR1oaWnBkiVL8KUvfanAW0MIIfFSW+wOEEJIqfKNb3wDl19+OVasWIGPf/zjWLduHa6++mo8/vjjePDBB1FXV4fx8XGsXLkSY2Nj+OQnP4lZs2Zh69atuOWWW9Db24v29nY8//zzeOc734mlS5fi3//939HQ0IBXXnkFDz74YLE3kRBCcoJCkhBCHNi9ezdWrVqFt73tbbjtttuQTIoD59BDD8Ull1yCX/3qV7jwwguxdu1arF+/Hr/97W/xnve8J7P81772tczfd955J8bHx3Hbbbehu7u74NtCCCH5gq5tQghx4K677sL4+Dg+85nPZEQkAHz0ox9FW1sb/vKXvwAA2tvbAQB33HEHhoeHHdvq6OgAAPzpT39CKpXKb8cJIaSAUEgSQogDGzduBAAsWbLEMr2+vh4HHHBA5vfFixfj0ksvxU9/+lN0d3dj5cqVuPLKKy3xkeeeey5OPvlk/PM//zNmzpyJ973vfbjxxhspKgkhZQ+FJCGE5Mh//ud/4plnnsGXvvQljIyM4FOf+hQOP/xwbNmyBQDQ1NSE+++/H3fddRc++MEP4plnnsG5556Lt771rZiamipy7wkhJDoUkoQQ4sDChQsBAOvWrbNMHx8fx/r16zO/K4488kh85Stfwf3334+//e1v2Lp1K3784x9nfk8mkzjttNPw/e9/H2vXrsW3vvUt3HPPPbj33nvzvzGEEJInKCQJIcSBFStWoL6+HldccQUMw8hM/9nPfoa+vj6cccYZAID+/n5MTk5alj3yyCORTCYxNjYGANi3b19W+0cddRQAZOYhhJByhFnbhBDiwIwZM3DZZZfh8ssvx9vf/naceeaZWLduHa666iocf/zx+MAHPgAAuOeee3DJJZfgve99Lw455BBMTk7il7/8JWpqanDOOecAAP793/8d999/P8444wwsXLgQu3btwlVXXYV58+bhlFNOKeZmEkJITlBIEkKIC9/4xjcwY8YM/Nd//Rc++9nPoqurCx/72Mfw7W9/G3V1dQCAZcuWYeXKlfjzn/+MrVu3orm5GcuWLcNtt92Gk046CQBw5plnYsOGDfj5z3+OPXv2oLu7G2984xtx+eWXZ7K+CSGkHEkYus+GEEIIIYSQgDBGkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERIJCkhBCCCGERKLgdSRTqRS2bduG1tZWJBKJQq+eEEIIIYT4YBgGBgYGMGfOHCST7nbHggvJbdu2Yf78+YVeLSGEEEIICcnmzZsxb948198LLiRbW1sBSMfa2toKvXpCCCGEEOJDf38/5s+fn9FtbhRcSCp3dltbG4UkIYQQQkgJ4xeGyGQbQgghhBASidBCcuvWrfjABz6A6dOno6mpCUceeSSeeOKJfPSNEEIIIYSUMKFc2/v378fJJ5+MN7/5zbjtttswY8YMvPzyy+js7MxX/wghhBBCSIkSSkj+x3/8B+bPn49rr702M23x4sWxd4oQQgghhJQ+oVzbN998M4477ji8973vRU9PD44++mj85Cc/8VxmbGwM/f39ln+EEEIIIaT8CSUkX3vtNVx99dU4+OCDcccdd+DjH/84PvWpT+EXv/iF6zKrVq1Ce3t75h9rSBJCCCGEVAYJwzCMoDPX19fjuOOOw0MPPZSZ9qlPfQqPP/44Hn74YcdlxsbGMDY2lvmu6hL19fWx/A8hhBBCSAnS39+P9vZ2X70WyiI5e/ZsHHbYYZZpr3vd67Bp0ybXZRoaGjI1I1k7khBCCCGkcgglJE8++WSsW7fOMu2ll17CwoULY+0UIYQQQggpfUIJyc9+9rN45JFH8O1vfxuvvPIKfv3rX+O///u/cfHFF+erf4QQQgghpEQJJSSPP/543HTTTbj++utxxBFH4Jvf/CZ+8IMf4Pzzz89X/wghhBBCSIkSKtkmDoIGbxJCCCGEkOKQl2QbQgghhBBCFBSSADA5AaSmit0LQgghhJCygkJyahLYvh7Y+mqxe0IIIYQQUlZQSI6PFrsHhBBCCCFlCYUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIUkIYQQQgiJBIWkztgoYKSK3QtCCCGEkLKgOoWkYThP37UJ2LOtsH0hhBBCCClTqk9I9u0FtrwMjI86/z46XNj+EEIIIYSUKdUnJPv3ymfv7uL2gxBCCCGkzKk+IUkIIYQQQmKBQpIQQgghhESCQtIl74YQQgghhHhDIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJBIUkIIYQQQiJRvULSyPqDEEIIIYSEoHqFJCGEEEIIyYkqFpK0RBJCCCGE5EIVC0lCCCGEEJILVSwkE8XuACGEEEJIWVPFQpKubUIIIYSQXKhiIUkIIYQQQnKBQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESCQpIQQgghhESisoXkS08B3/oQ8OMvFLsnhBBCCCEVR22xO5BXxoeBPdvA4RAJIYQQQuKnsi2Smc3jcIiEEEIIIXFT2UIykbZEUkcSQgghhMROlQjJVHH7QQghhBBSgVSHkCSEEEIIIbFT2UJSJdkY9G0TQgghhMRNZQvJBIUkIYQQQki+qA4hyWwbQgghhJDYCSUkv/GNbyCRSFj+HXroofnqWwx4WCRTKaBvDzAxXtguEUIIIYRUCKELkh9++OG46667zAZqS7imedLDIjk5DvTvK2h3CCGEEEIqidAqsLa2FrNmzcpHX+KHMZKEEEIIIXkjdIzkyy+/jDlz5uCAAw7A+eefj02bNuWjX/GQSG8edSQhhBBCSOyEskieeOKJuO6667BkyRJs374dl19+OU499VQ899xzaG1tdVxmbGwMY2Njme/9/f259TgUTLYhhBBCCMkXoYTk6aefnvl76dKlOPHEE7Fw4ULceOON+MhHPuK4zKpVq3D55Zfn1suoZHQkhSQhhBBCSNzkVP6no6MDhxxyCF555RXXeS677DL09fVl/m3evDmXVYYj49ougpDs38tkHkIIIYRUNDkJycHBQbz66quYPXu26zwNDQ1oa2uz/CscRUq2mZoE+vZKeaEUx/kmhBBCSGUSSkj+67/+K1avXo0NGzbgoYcewrvf/W7U1NTgvPPOy1f/csOr/E8+sQhXutUJIYQQUpmEipHcsmULzjvvPOzduxczZszAKaecgkceeQQzZszIV/9yJOE/CyGEEEIIiUQoIXnDDTfkqx/5IWOQpHuZEEIIISRuKnysbdaRJIQQQgjJF5UtJIuVbEMIIYQQUgVUtpBMqs2jkCSEEEIIiZvKFpIsSE4IIYQQkjcqW0iWgmubGpYQQgghFUplC8lEkTYvwbJDhBBCCKl8Klx
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAHDCAYAAAAupnzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYsklEQVR4nO3dd3hUVf7H8fckIYWSgpGEQGjSFBAUJEYB1yUaFV1x/a2IKIoIiqBgUBELsMoKgihFiqAr7q4K6lppyoKIYgwQehFRQYomgCEFCGlzfn9cMjAaSii5mbmf1/PcZzIzZzLfyRX4ePK957iMMQYREREREYcJsLsAERERERE7KAiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4g40MyZM3G5XGzfvt3uUkREbKMgLCIiIiKOpCAsIiIiIo6kICwiIn9gjCE/P9/uMkREzikFYRERoUGDBtx444189tlntGvXjrCwMF599VW7yxIROacUhEVEBIAtW7bQvXt3rrnmGiZMmECbNm3sLklE5JwKsrsAERGpHH744QcWLFhAcnKy3aWIiFQIzQiLiAgADRs2VAgWEUdREBYREcAKwiIiTqIgLCIiAISFhdldgohIhVIQFhERERFHUhAWEREREUdSEBYRERERR1IQFhERERFHchljjN1FiIiIiIhUNM0Ii4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIwXZXYCvcbvd/PLLL9SoUQOXy2V3OSIiIiLyO8YY8vLyiIuLIyDg+PO+CsLl9MsvvxAfH293GSIiIiJyEjt37qRu3brHfV5BuJxq1KgBWD/Y8PBwm6sRERERkd/Lzc0lPj7ek9uOR0G4nErbIcLDwxWERURERCqxk7Wx6mI5EREREXEkBWERERERcSQFYRERERFxJAVhEREREXEkBWERERERcSQFYRERERFxJAVhEREREXEkBWERERERcSQFYRERERFxJAVhEREREXGk0wrCkydPpkGDBoSGhpKQkMDy5ctPOP69996jefPmhIaG0qpVK+bNm+f1vDGGYcOGUbt2bcLCwkhKSmLr1q1eY7KysujRowfh4eFERkbSu3dvDhw44Hn+8OHD3HPPPbRq1YqgoCC6du1aZi1Llizh0ksvJSQkhMaNGzNz5szT+RGIiIiIiI8rdxCePXs2KSkpDB8+nFWrVtG6dWuSk5PZs2dPmeO/+eYbunfvTu/evVm9ejVdu3ala9eubNiwwTNmzJgxTJw4kWnTppGWlka1atVITk7m8OHDnjE9evRg48aNLFy4kDlz5rB06VL69u3reb6kpISwsDAefvhhkpKSyqxl27ZtdOnShauvvpo1a9YwaNAg7rvvPj777LPy/hhERERExMe5jDGmPC9ISEjgsssu45VXXgHA7XYTHx/PQw89xBNPPPGH8d26dePgwYPMmTPH89jll19OmzZtmDZtGsYY4uLiGDx4MI8++igAOTk5xMTEMHPmTG6//XY2b97MRRddxIoVK2jXrh0ACxYs4IYbbmDXrl3ExcV5vec999xDdnY2H330kdfjQ4YMYe7cuV4h/Pbbbyc7O5sFCxac0ufPzc0lIiKCnJwcwsPDT+k1IiIiIlJxTjWvlWtGuLCwkPT0dK8Z14CAAJKSkkhNTS3zNampqX+YoU1OTvaM37ZtGxkZGV5jIiIiSEhI8IxJTU0lMjLSE4IBkpKSCAgIIC0t7ZTrP1ktjpSVCbt/hIJ8uysRERERqVBB5Rm8b98+SkpKiImJ8Xo8JiaG7777rszXZGRklDk+IyPD83zpYycaU6tWLe/Cg4KoWbOmZ8ypOF4tubm55OfnExYW9ofXFBQUUFBQ4Lmfm5t7yu9X6eXsg+fvhpJi636NmhAdB+fXOXJbF2o3gOi6EBhoa6kiIiIiZ1u5grATjRo1ir///e92l3Fu7Nl1NAQD5GVZx7YN3uMCq0BMPajd0ArGcY2gbhOoEVWh5YqIiIicTeUKwtHR0QQGBpKZmen1eGZmJrGxsWW+JjY29oTjS28zMzOpXbu215g2bdp4xvz+Yrzi4mKysrKO+77lqSU8PLzM2WCAoUOHkpKS4rmfm5tLfHz8Kb9npZafZ902aAF9RsK+X6zjt19g727I3AEZ26HwMPzyo3UcKyoG6jU7etRtCqFVK/xjiIiIiJyOcgXh4OBg2rZty6JFizzLk7ndbhYtWsSAAQPKfE1iYiKLFi1i0KBBnscWLlxIYmIiAA0bNiQ2NpZFixZ5gm9ubi5paWn069fP8z2ys7NJT0+nbdu2ACxevBi3201CQsIp15+YmPiHpduOraUsISEhhISEnPJ7+JT8I8vPVa0OVWscDbTHcrshK8MKxL9ug1+3Wz3Fe3fC/kzrWLvUGutyQe1GcEEraHSxdatZYxEREamkyt0akZKSwt133027du1o374948eP5+DBg/Tq1QuAnj17UqdOHUaNGgXAwIEDueqqqxg3bhxdunRh1qxZrFy5kunTpwPgcrkYNGgQI0eOpEmTJjRs2JBnnnmGuLg4T9i+8MILue666+jTpw/Tpk2jqKiIAQMGcPvtt3utGLFp0yYKCwvJysoiLy+PNWvWAHgC9gMPPMArr7zC448/zr333svixYt59913mTt37un+/HzboSNBOKz68ccEBFj9wtFx0PKKo48fPgg7t8KO72DHFti5BfbvOTpz/NVH1rha8dCoFVxwMTS9FMJrnrOPIyIiIlIe5Q7C3bp1Y+/evQwbNoyMjAzatGnDggULPBeh7dixg4CAo4tRXHHFFbz99ts8/fTTPPnkkzRp0oSPPvqIli1besY8/vjjHDx4kL59+5KdnU2HDh1YsGABoaGhnjFvvfUWAwYMoHPnzgQEBHDrrbcyceJEr9puuOEGfv75Z8/9Sy65BLA27ABr9nnu3Lk88sgjTJgwgbp16/Laa6+RnJxc3h+DfyhtjThRED6e0GrQpI11lMr5zeov/nEd/LTemkHes9M6vj0yEx93ATRvB80vg4YtIKjKmX4KERERkdNS7nWEnc6v1hH+7yT4+mO49k64/p6z//0P5sK2jfDTOti6FnZ97/18cCg0bgMXXgYtEiGqVpnfRkRERKQ8TjWvadUIJzt0BjPCp6JaOLRMtA6AA9mwJR2+W2Hd5u2HTd9ax38nWRfbtboCWnWA2PpWz7GIiIjIOaIg7GT5p9AjfDZVj4S2na3D7YZff4LvVsLGb2H7RmvGeNf3MH8mRNc5GorrX2j1KouIiIicRQrCTuZZNaJGxb93QADUaWwdnW+3Zoc3fgvrv4bvV8G+3fDFe9YRFQOX/Aku/bO1hrFmikVEROQsUBB2Ms+qEdXsrQOsZdYuv946Dh+yZorXfw0bU60l2hbPto6Y+nDp1VYojo47+fcVEREROQ4FYSfzrBphw4zwiYRWhTadrKOwwOohXvUFbEqDzJ+t1on5M62WifbJ1mxxRbV3iIiIiN9QEHayYzfUqKyCQ6DNVdaRfwDWL4P0xbB1Nfy82To+mgqtO0LCddZGHuonFhERkVOgIOxUhQVQXGR97SuzqWHVrRng9smQmwXp/4O0BdZW0Cv/Zx3n1T4y5jqIjLa7YhEREanEFISdqrQtIiAAQqraW8vpCK8JV98Gf/qbNSuctgBWL4HffrXaJj77l7UTXoebrbWKdYGdiIiI/I6CsFPlH7Ruw6r7dkh0uaDBRdbRtR+s+wq+nW/tbLfua+uIqQdX/gUuu8baEU9EREQEBWHnOlRJL5Q7EyFhcNm11vHLT/DNp7BiodU68cErMPd1aJcEHbtaq0+IiIiIoykIO1V+JVo67VyIawT/NxBuvM8Kw8s+sQLxsk+t46IEq62icWvfnhEXERGR06Yg7FSeIOxHM8JlCa1mzQB3uBl+WAtffQgbvrGWYtuUZm3ocfXfrFUpAvXHQURExEn0L79TlbZGVOal084mlwuatLGOvbvgyw9g+Wew+wf4zyiY8xp0ugUSu6iPWERExCG
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFkklEQVR4nO3deXxU1f3/8fdkmyyQhM2EJRAQBNkVSMQiYE0NigtqERQEEaX6BVuLpYqtUG1rrG0prSLU/iLUuoAsIgoiEAFFURQEjGBcWAWSEJYkBEhC5vz+uMkkQ8KSQHJnJq/n43Efc3LmzJ3PcCu8e3LuGYcxxggAAADwcQF2FwAAAABcDARbAAAA+AWCLQAAAPwCwRYAAAB+gWALAAAAv0CwBQAAgF8g2AIAAMAvEGwBAADgFwi2AAAA8AsEWwAAAPgFgi0AnIddu3bJ4XBozpw5trz/nDlz5HA4tGvXLlveHwB8AcEWALzIM888o8WLF9tdhu644w7deOONdpcBANVCsAUAL3KmYHvPPffoxIkTatOmTa3XUFxcrJUrV2rw4MG1/l4AcDEF2V0AAODcAgMDFRgYWCfv9dFHHyk/P59gC8DnMGMLwCft27dP9913n2JiYuR0OtWlSxe9/PLLkqSsrCwFBQXpqaeeqvS6jIwMORwOvfDCC5Kkw4cP6ze/+Y26deumBg0aKDIyUjfccIO2bNlyzhoGDhyogQMHVuq/9957FR8f79H3t7/9TVdffbWaNGmisLAw9erVSwsWLPAY43A4VFBQoP/+979yOBxyOBy69957JZ15je2LL76oLl26yOl0qkWLFho/fryOHj1aqc6uXbtq27ZtuvbaaxUeHq6WLVvqueeeq/JzLV26VJ07d3Z/hq1bt+ree+9Vu3btFBoaqtjYWN133306dOhQpdfu27dPY8eOVYsWLeR0OtW2bVs99NBDKioqco85evSofv3rXys+Pl5Op1OtWrXSqFGjlJOTU2U9AHC+mLEF4HOysrJ01VVXyeFwaMKECWrWrJnee+89jR07Vnl5eXrkkUc0YMAAvfnmm5o6darHa+fNm6fAwEANHTpUkrRjxw4tXrxYQ4cOVdu2bZWVlaV///vfGjBggLZt26YWLVpclJr/+c9/6pZbbtGIESNUVFSkuXPnaujQoXr33XfdM6P/+9//dP/99yshIUHjxo2TJF166aVnPOcf/vAHPfXUU0pKStJDDz2kjIwMzZw5U59//rk+/vhjBQcHu8ceOXJEgwYN0u23364777xTCxYs0GOPPaZu3brphhtu8DjvsmXLdNNNN7l/XrlypXbs2KExY8YoNjZWX3/9tV566SV9/fXX+vTTT+VwOCRJ+/fvV0JCgo4ePapx48apU6dO2rdvnxYsWKDjx48rJCREx44d0zXXXKPt27frvvvu05VXXqmcnBwtWbJEP/74o5o2bXpR/rwB1FMGAHzM2LFjTfPmzU1OTo5H//Dhw01UVJQ5fvy4+fe//20kma+++spjTOfOnc1Pf/pT988nT540JSUlHmN27txpnE6nefrppz36JJnZs2e7+wYMGGAGDBhQqb7Ro0ebNm3aePQdP37c4+eioiLTtWtXj1qMMSYiIsKMHj260jlnz55tJJmdO3caY4zJzs42ISEh5vrrr/eo/4UXXjCSzMsvv+xRpyTzyiuvuPsKCwtNbGysueOOOzzeZ8eOHUaSWb169RlrN8aYN954w0gyH374obtv1KhRJiAgwHz++eeVxrtcLmOMMVOmTDGSzKJFi844BgBqiqUIAHyKMUYLFy7UzTffLGOMcnJy3EdycrJyc3O1adMm3X777QoKCtK8efPcr01PT9e2bds0bNgwd5/T6VRAgPVXYUlJiQ4dOqQGDRqoY8eO2rRp00WrOywszN0+cuSIcnNzdc0119T4PVatWqWioiI98sgj7vol6YEHHlBkZKSWLl3qMb5BgwYaOXKk++eQkBAlJCRox44dHuOWLl2qqKgo9evXr8raT548qZycHF111VWS5K7f5XJp8eLFuvnmm9W7d+9K9ZbN6i5cuFA9evTQbbfddsYxAFBTBFsAPuXgwYM6evSoXnrpJTVr1szjGDNmjCQpOztbTZs21XXXXac333zT/dp58+YpKChIt99+u7vP5XLpH//4hzp06CCn06mmTZuqWbNm2rp1q3Jzcy9a3e+++66uuuoqhYaGqnHjxmrWrJlmzpxZ4/fYvXu3JKljx44e/SEhIWrXrp37+TKtWrWqFBwbNWqkI0eOePQtXbpU119/vYKCyleqHT58WL/61a8UExOjsLAwNWvWTG3btpUkd/0HDx5UXl6eunbteta6f/jhh3OOAYCaYo0tAJ/icrkkSSNHjtTo0aOrHNO9e3dJ0vDhwzVmzBht3rxZPXv21JtvvqnrrrvOYx3nM888oyeffFL33Xef/vjHP6px48YKCAjQI4884n6vM3E4HDLGVOovKSnx+Pmjjz7SLbfcov79++vFF19U8+bNFRwcrNmzZ+v111+v1uevqTPtqFCx/uPHj2vNmjWaOXOmx5g777xTn3zyiSZNmqSePXuqQYMGcrlcGjRo0Dn/jACgLhFsAfiUZs2aqWHDhiopKVFSUtJZxw4ZMkS/+MUv3MsRvv32W02ePNljzIIFC3TttdcqNTXVo//o0aPnvJGpUaNGlX6VL6nSbOnChQsVGhqq999/X06n090/e/bsSq8931/Hl+1nm5GRoXbt2rn7i4qKtHPnznP+2VTlgw8+UGFhocfNZEeOHFFaWpqeeuopTZkyxd3/3Xffeby2WbNmioyMVHp6+lnf49JLLz3nGACoKZYiAPApgYGBuuOOO7Rw4cIqA9LBgwfd7ejoaCUnJ+vNN9/U3LlzFRISoiFDhlQ63+mzrvPnz9e+ffvOWcull16qb775xuM9t2zZoo8//rjSezgcDo+Z3F27dlX5RQwRERGVtuuqSlJSkkJCQvSvf/3Lo/7U1FTl5ubWaA/aZcuWqXfv3oqJifGoXVKlP6Pp06d7/BwQEKAhQ4bonXfe0RdffFHp3GWvv+OOO7Rlyxa99dZbZxwDADXFjC0An/Pss89q9erVSkxM1AMPPKDOnTvr8OHD2rRpk1atWqXDhw+7xw4bNkwjR47Uiy++qOTkZEVHR3uc66abbtLTTz+tMWPG6Oqrr9ZXX32l1157zWMW9Ezuu+8+TZs2TcnJyRo7dqyys7M1a9YsdenSRXl5ee5xgwcP1rRp0zRo0CDdfffdys7O1owZM9S+fXtt3brV45y9evXSqlWrNG3aNLVo0UJt27ZVYmJipfdu1qyZJk+erKeeekqDBg3SLbfcooyMDL344ovq06ePx41i52vZsmXudcplIiMj1b9/fz333HMqLi5Wy5YttWLFCu3cubPS65955hmtWLFCAwYM0Lhx43T55ZfrwIEDmj9/vtatW6fo6GhNmjRJCxYs0NChQ3XfffepV69eOnz4sJYsWaJZs2apR48e1a4bANxs248BAC5AVlaWGT9+vImLizPBwcEmNjbWXHfddeall17yGJeXl2fCwsKMJPPqq69WOs/JkyfNo48+apo3b27CwsLMT37yE7N+/fpKW3lVtd2XMca8+uqrpl27diYkJMT07NnTvP/++1Vu95Wammo6dOhgnE6n6dSpk5k9e7aZOnWqOf2v4W+++cb079/fXXPZ1l+nb/dV5oUXXjCdOnUywcHBJiYmxjz00EPmyJEjHmMGDBhgunTpUumzV6wzPT3dSDIbNmyoNO7HH380t912m4mOjjZRUVFm6NChZv/+/UaSmTp1qsfY3bt3m1GjRplmzZoZp9Np2rVrZ8aPH28KCwvdYw4dOmQmTJhgWrZsaUJCQkyrVq3M6NGjK23fBgDV5TCG3/0AQH333HPPadq0aTpw4ADbbgHwWayxBQAoPj5e//jHPwi1AHwaM7YAAADwC8zYAgAAwC8QbAEAAOAXCLYAAADwC36xj63L5dL+/fvVsGFDbnwAAADwQsYY5efnq0WLFgoIqJ25Vb8Itvv371dcXJzdZQAAAOAc9u7dq1atWtXKuf0i2DZ
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAq0AAAHDCAYAAAAOSiMcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHfElEQVR4nO3deXyU1d3///dkmwTIwpKEBMKOrAKRXQREEEREcUVEUUGrNbR6u1Rpv3Xp/WtjraW3VqVqFbUuYVFQEdHILiIIEgXBoGUJQhLWrEDW8/vjIkOGJJAJSa5J5vV8PK7HnLnmXJnP5HJ5czhzjsMYYwQAAAB4MT+7CwAAAADOhdAKAAAAr0doBQAAgNcjtAIAAMDrEVoBAADg9QitAAAA8HqEVgAAAHg9QisAAAC8HqEVAAAAXo/QCgAAAK9HaAXgs/bs2SOHw6E33njDlvd/44035HA4tGfPnnp/7yeffFIOh6Pe3xcAaorQCgB17C9/+YsWL15sdxm6/vrrdeWVV9pdBgDUCKEVAOpYVaH1tttu04kTJ9S+ffs6r6GoqEjJycmaMGFCnb8XANSFALsLAABf5e/vL39//3p5r7Vr1yo3N5fQCqDBYqQVgNfYv3+/pk+frujoaDmdTvXq1Uuvv/66JCkzM1MBAQF66qmnKlyXmpoqh8OhF154QZJ09OhRPfzww7rwwgvVrFkzhYWFafz48fruu+/OWcOll16qSy+9tML5O+64Qx06dHA79+yzz+riiy9Wy5YtFRISov79+2vhwoVufRwOh/Lz8/Xmm2/K4XDI4XDojjvukFT1nNaXXnpJvXr1ktPpVGxsrBISEpSVlVWhzt69e2v79u0aNWqUmjRpojZt2uiZZ56p9HN98skn6tmzZ4XPUF5xcbH+93//V507d5bT6VSHDh30+9//XgUFBW79Nm3apHHjxqlVq1YKCQlRx44dNX36dLc+SUlJ6t+/v0JDQxUWFqYLL7xQzz33XJXvDQDnwkgrAK+QmZmpIUOGyOFwaObMmYqMjNSnn36qGTNmKCcnRw888IBGjhyp+fPn64knnnC7dt68efL399eNN94oSdq1a5cWL16sG2+8UR07dlRmZqZefvlljRw5Utu3b1dsbGyt1Pzcc8/p6quv1tSpU1VYWKikpCTdeOONWrJkiWtE8z//+Y/uuusuDRo0SL/61a8kSZ07d67yZz755JN66qmnNGbMGP36179Wamqq5syZo2+++Ubr1q1TYGCgq++xY8d0xRVX6LrrrtNNN92khQsX6tFHH9WFF16o8ePHu/3cpUuX6qqrrjrr57nrrrv05ptv6oYbbtBDDz2kDRs2KDExUTt27NCiRYskSQcPHtTYsWMVGRmpxx57TBEREdqzZ48++OAD189JTk7WlClTNHr0aP31r3+VJO3YsUPr1q3T/fff78FvGADKMQDgBWbMmGFiYmLM4cOH3c7ffPPNJjw83Bw/fty8/PLLRpLZunWrW5+ePXuayy67zPX85MmTpqSkxK3P7t27jdPpNH/605/czkkyc+fOdZ0bOXKkGTlyZIX6br/9dtO+fXu3c8ePH3d7XlhYaHr37u1WizHGNG3a1Nx+++0VfubcuXONJLN7925jjDEHDx40QUFBZuzYsW71v/DCC0aSef31193qlGTeeust17mCggLTunVrc/3117u9z65du4wks3LlSte5J554wpT/X0BKSoqRZO666y63ax9++GEjyaxYscIYY8yiRYuMJPPNN99U+Dxl7r//fhMWFmaKi4ur7AMAnmJ6AADbGWP0/vvva+LEiTLG6PDhw65j3Lhxys7O1rfffqvrrrtOAQEBmjdvnuvabdu2afv27Zo8ebLrnNPplJ+f9Z+3kpISHTlyRM2aNVO3bt307bff1lrdISEhrvaxY8eUnZ2t4cOH1/g9vvjiCxUWFuqBBx5w1S9Jd999t8LCwvTJJ5+49W/WrJluvfVW1/OgoCANGjRIu3btcuv3ySefKDw8XJdcckmV77106VJJ0oMPPuh2/qGHHnL9DEmKiIiQJC1ZskRFRUWV/qyIiAjl5+crOTn5bB8XADxCaAVgu0OHDikrK0uvvPKKIiMj3Y4777xTkvXX0q1atdLo0aM1f/5817Xz5s1TQECArrvuOte50tJS/eMf/1DXrl3ldDrVqlUrRUZG6vvvv1d2dnat1b1kyRINGTJEwcHBatGihSIjIzVnzpwav8fevXslSd26dXM7HxQUpE6dOrleL9O2bdsKa602b95cx44dczv3ySefaOzYsQoIqHpG2N69e+Xn56cuXbq4nW/durUiIiJc7z1y5Ehdf/31euqpp9SqVStdc801mjt3rtu81/vuu08XXHCBxo8fr7Zt22r69OlatmxZNX8LAFA5QisA25WWlkqSbr31ViUnJ1d6DBs2TJJ08803a+fOnUpJSZEkzZ8/X6NHj1arVq1cP+8vf/mLHnzwQY0YMUJvv/22PvvsMyUnJ6tXr16u96pKVQvul5SUuD1fu3atrr76agUHB+ull17S0qVLlZycrFtuuUXGmJr+KjxS1coD5d//+PHjWrVqVbXXZz3XhgMOh0MLFy7U+vXrNXPmTNeX5/r376+8vDxJUlRUlFJSUvTRRx/p6quv1sqVKzV+/Hjdfvvt1fxkAFARX8QCYLvIyEiFhoaqpKREY8aMOWvfSZMm6Z577nFNEdi5c6dmzZrl1mfhwoUaNWqUXnvtNbfzWVlZbuG2Ms2bN6/w1+uSKoxyvv/++woODtZnn30mp9PpOj937twK11Z356my9VpTU1PVqVMn1/nCwkLt3r37nL+byqxYsUIFBQUVvphV2XuXlpbqp59+Uo8ePVznMzMzlZWVVWEt2SFDhmjIkCH685//rHfffVdTp05VUlKS7rrrLknW6PDEiRM1ceJElZaW6r777tPLL7+sP/7xjxVGcwGgOhhpBWA7f39/XX/99Xr//fe1bdu2Cq8fOnTI1Y6IiNC4ceM0f/58JSUlKSgoSJMmTarw884c7VywYIH2799/zlo6d+6sH3/80e09v/vuO61bt67CezgcDrcR2D179lS6iUDTpk0rLFlVmTFjxigoKEjPP/+8W/2vvfaasrOza7TG6tKlSzVgwABFR0eftV/ZSOz//d//uZ2fPXu2JLne+9ixYxV+t/369ZMk1xSBI0eOuL3u5+enPn36uPUBAE8x0grAKzz99NNauXKlBg8erLvvvls9e/bU0aNH9e233+qLL77Q0aNHXX0nT56sW2+9VS+99JLGjRvn+nJQmauuukp/+tOfdOedd+riiy/W1q1b9c4777iNXlZl+vTpmj17tsaNG6cZM2bo4MGD+te//qVevXopJyfH1W/ChAmaPXu2rrjiCt1yyy06ePCgXnzxRXXp0kXff/+928/s37+/vvjiC82ePVuxsbHq2LGjBg8eXOG9IyMjNWvWLD311FO64oordPXVVys1NVUvvfSSBg4c6Palq+paunSpa17w2fTt21e33367XnnlFWVlZWnkyJHauHGj3nzzTU2aNEmjRo2SJL355pt66aWXdO2116pz587Kzc3Vq6++qrCwMFfwveuuu3T06FFddtllatu2rfbu3at//vOf6tevn9soLgB4xMaVCwDATWZmpklISDBxcXEmMDDQtG7d2owePdq88sorbv1ycnJMSEiIkWTefvvtCj/n5MmT5qGHHjIxMTEmJCTEDBs2zKxfv77CclaVLXlljDFvv/226dSpkwkKCjL9+vUzn332WaVLXr322muma9euxul0mu7du5u5c+dWWErKGGN+/PFHM2LECFfNZctfnbnkVZkXXnjBdO/e3QQGBpro6Gjz61//2hw7dsytz8iRI02vXr0qfPbydW7bts1IMhs3bqzQr7I6i4qKzFNPPWU6duxoAgMDTVxcnJk1a5Y5efKkq8+3335rpkyZYtq1a2ecTqeJiooyV111ldm0aZOrz8KFC83YsWNNVFSUCQoKMu3atTP33HOPSU9Pr1AHAFSXw5h6+sYAAKBePfPMM5o9e7bS09OrPa8WALwVc1oBoJHq0KGD/vG
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tb_dir = os.path.join(WORK_DIR, 'tensorboard_output')\n",
"fname = os.listdir(tb_dir)[0]\n",
"tb_path = os.path.join(tb_dir, fname)\n",
"#\n",
"data = read_tensorboard_file(tb_path)\n",
"print(data.keys())\n",
"_ = plot_image(data, 'loss', 0.9)\n",
"_ = plot_image(data, 'lr', 0)\n",
"_ = plot_image(data, 'evaluation/acc', 0)\n",
"_ = plot_image(data, 'evaluation/loss', 0)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 推理\n",
"推理部分见baichuan_infer.ipynb"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}