2022-12-30 07:43:57 +08:00
|
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
|
|
|
from modelscope.models import Model
|
|
|
|
|
from modelscope.models.cv.image_instance_segmentation import MaskDINOSwinModel
|
|
|
|
|
from modelscope.outputs import OutputKeys
|
|
|
|
|
from modelscope.pipelines import pipeline
|
|
|
|
|
from modelscope.pipelines.cv import MaskDINOInstanceSegmentationPipeline
|
|
|
|
|
from modelscope.utils.constant import Tasks
|
|
|
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
|
|
|
|
|
2023-05-22 10:53:18 +08:00
|
|
|
class MaskDINOInstanceSegmentationTest(unittest.TestCase):
|
2022-12-30 07:43:57 +08:00
|
|
|
|
|
|
|
|
def setUp(self) -> None:
|
|
|
|
|
self.task = Tasks.image_segmentation
|
|
|
|
|
self.model_id = 'damo/cv_maskdino-swin-l_image-instance-segmentation_coco'
|
|
|
|
|
|
|
|
|
|
image = 'data/test/images/image_instance_segmentation.jpg'
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
|
|
|
def test_run_with_model_name(self):
|
|
|
|
|
pipeline_ins = pipeline(
|
|
|
|
|
task=Tasks.image_segmentation, model=self.model_id)
|
|
|
|
|
print(pipeline_ins(input=self.image)[OutputKeys.LABELS])
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
|
|
|
def test_run_with_model_from_modelhub(self):
|
|
|
|
|
model = Model.from_pretrained(self.model_id)
|
|
|
|
|
pipeline_ins = pipeline(
|
|
|
|
|
task=Tasks.image_segmentation, model=model, preprocessor=None)
|
|
|
|
|
print(pipeline_ins(input=self.image)[OutputKeys.LABELS])
|
|
|
|
|
|
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
|
|
|
def test_run_by_direct_model_download(self):
|
|
|
|
|
cache_path = snapshot_download(self.model_id)
|
|
|
|
|
model = MaskDINOSwinModel(cache_path)
|
|
|
|
|
pipeline1 = MaskDINOInstanceSegmentationPipeline(
|
|
|
|
|
model, preprocessor=None)
|
|
|
|
|
pipeline2 = pipeline(
|
|
|
|
|
Tasks.image_segmentation, model=model, preprocessor=None)
|
|
|
|
|
print(f'pipeline1:{pipeline1(input=self.image)[OutputKeys.LABELS]}')
|
|
|
|
|
print(f'pipeline2: {pipeline2(input=self.image)[OutputKeys.LABELS]}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|