Files
modelscope/tests/pipelines/test_efficient_diffusion_tuning.py

63 lines
2.5 KiB
Python
Raw Permalink Normal View History

2023-04-11 22:26:13 +08:00
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
2023-09-18 18:22:53 +08:00
import os
2023-04-11 22:26:13 +08:00
import unittest
from modelscope.models import Model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class EfficientDiffusionTuningTest(unittest.TestCase):
2023-04-11 22:26:13 +08:00
def setUp(self) -> None:
2024-12-05 20:07:32 +08:00
# os.system('pip install ms-swift -U')
2023-04-11 22:26:13 +08:00
self.task = Tasks.efficient_diffusion_tuning
2024-12-05 20:07:32 +08:00
@unittest.skip
2023-04-11 22:26:13 +08:00
def test_efficient_diffusion_tuning_lora_run_pipeline(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
model_revision = 'v1.0.2'
2023-04-11 22:26:13 +08:00
inputs = {'prompt': 'pale golden rod circle with old lace background'}
edt_pipeline = pipeline(
self.task, model_id, model_revision=model_revision)
2023-04-11 22:26:13 +08:00
result = edt_pipeline(inputs)
print(f'Efficient-diffusion-tuning-lora output: {result}.')
2024-12-05 20:07:32 +08:00
@unittest.skip
2023-04-11 22:26:13 +08:00
def test_efficient_diffusion_tuning_lora_load_model_from_pretrained(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
model_revision = 'v1.0.2'
model = Model.from_pretrained(model_id, model_revision=model_revision)
2023-09-18 18:22:53 +08:00
from modelscope.models.multi_modal import EfficientStableDiffusion
2023-04-11 22:26:13 +08:00
self.assertTrue(model.__class__ == EfficientStableDiffusion)
2024-12-05 20:07:32 +08:00
@unittest.skip
2023-04-11 22:26:13 +08:00
def test_efficient_diffusion_tuning_control_lora_run_pipeline(self):
# TODO: to be fixed in the future
2023-04-11 22:26:13 +08:00
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
model_revision = 'v1.0.2'
2023-04-11 22:26:13 +08:00
inputs = {
'prompt':
'pale golden rod circle with old lace background',
'cond':
'data/test/images/efficient_diffusion_tuning_sd_control_lora_source.png'
}
edt_pipeline = pipeline(
self.task, model_id, model_revision=model_revision)
2023-04-11 22:26:13 +08:00
result = edt_pipeline(inputs)
print(f'Efficient-diffusion-tuning-control-lora output: {result}.')
2024-12-05 20:07:32 +08:00
@unittest.skip
2023-04-11 22:26:13 +08:00
def test_efficient_diffusion_tuning_control_lora_load_model_from_pretrained(
self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
model_revision = 'v1.0.2'
model = Model.from_pretrained(model_id, model_revision=model_revision)
2023-09-18 18:22:53 +08:00
from modelscope.models.multi_modal import EfficientStableDiffusion
2023-04-11 22:26:13 +08:00
self.assertTrue(model.__class__ == EfficientStableDiffusion)
if __name__ == '__main__':
unittest.main()