2020-11-23 16:51:05 +01:00
|
|
|
import sys
|
|
|
|
|
import os
|
|
|
|
|
import cv2
|
|
|
|
|
import torch
|
|
|
|
|
import argparse
|
|
|
|
|
import numpy as np
|
|
|
|
|
#from tqdm import tqdm
|
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
import warnings
|
|
|
|
|
import _thread
|
|
|
|
|
#import skvideo.io
|
|
|
|
|
from queue import Queue
|
|
|
|
|
|
|
|
|
|
abspath = os.path.abspath(__file__)
|
|
|
|
|
dname = os.path.dirname(abspath)
|
|
|
|
|
print("Changing working dir to {0}".format(dname))
|
|
|
|
|
os.chdir(os.path.dirname(dname))
|
|
|
|
|
print("Added {0} to PATH".format(dname))
|
|
|
|
|
sys.path.append(dname)
|
|
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
torch.backends.cudnn.enabled = True
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
else:
|
|
|
|
|
print("WARNING: CUDA is not available, RIFE is running on CPU! [ff:nocuda-cpu]")
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
|
|
|
|
parser.add_argument('--input', required=True)
|
2020-12-03 00:00:31 +01:00
|
|
|
parser.add_argument('--output', required=False, default='frames-interpolated')
|
2020-11-23 16:51:05 +01:00
|
|
|
parser.add_argument('--imgformat', default="png")
|
|
|
|
|
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
|
2020-12-03 00:00:31 +01:00
|
|
|
#parser.add_argument('--scn', dest='scn', default=False, help='enable scene detection')
|
2020-11-23 16:51:05 +01:00
|
|
|
#parser.add_argument('--fps', dest='fps', type=int, default=None)
|
|
|
|
|
parser.add_argument('--png', dest='png', default=True, help='whether to output png format outputs')
|
|
|
|
|
#parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='output video extension')
|
|
|
|
|
parser.add_argument('--times', dest='times', type=int, default=1, help='interpolation exponent (default: 1)')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
assert (args.times in [1, 2, 3])
|
|
|
|
|
args.exptimes = 2 ** args.times
|
|
|
|
|
|
|
|
|
|
from model.RIFE import Model
|
|
|
|
|
model = Model()
|
|
|
|
|
model.load_model(os.path.join(dname, "models"))
|
|
|
|
|
model.eval()
|
|
|
|
|
model.device()
|
|
|
|
|
|
|
|
|
|
videoCapture = cv2.VideoCapture("{}/%08d.png".format(args.input),cv2.CAP_IMAGES)
|
|
|
|
|
#fps = np.round(videoCapture.get(cv2.CAP_PROP_FPS))
|
|
|
|
|
#videogen = skvideo.io.vreader(args.video)
|
|
|
|
|
success, frame = videoCapture.read()
|
|
|
|
|
h, w, _ = frame.shape
|
|
|
|
|
|
|
|
|
|
path = args.input
|
|
|
|
|
name = os.path.basename(path)
|
2020-12-03 00:00:31 +01:00
|
|
|
print('name: ' + name)
|
|
|
|
|
interp_output_path = (args.output).join(path.rsplit(name, 1))
|
|
|
|
|
print('interp_output_path: ' + interp_output_path)
|
2020-11-23 16:51:05 +01:00
|
|
|
|
|
|
|
|
#if args.fps is None:
|
|
|
|
|
# args.fps = fps * args.exptimes
|
|
|
|
|
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
|
|
|
|
#video_path_wo_ext, ext = os.path.splitext(args.video)
|
|
|
|
|
if args.png:
|
|
|
|
|
if not os.path.exists(interp_output_path):
|
|
|
|
|
os.mkdir(interp_output_path)
|
|
|
|
|
vid_out = None
|
|
|
|
|
#else:
|
|
|
|
|
# vid_out = cv2.VideoWriter('{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.exptimes, int(np.round(args.fps)), args.ext), fourcc, args.fps, (w, h))
|
|
|
|
|
|
|
|
|
|
cnt = 0
|
|
|
|
|
skip_frame = 1
|
|
|
|
|
buffer = Queue()
|
|
|
|
|
|
|
|
|
|
def write_frame(i0, infs, i1, p, user_args):
|
|
|
|
|
global skip_frame, cnt
|
|
|
|
|
for i in range(i0.shape[0]):
|
|
|
|
|
l = len(infs)
|
|
|
|
|
# A video transition occurs.
|
|
|
|
|
#if p[i] > 0.2:
|
2020-12-03 00:00:31 +01:00
|
|
|
# print('Transition! Duplicting frame instead of interpolating.')
|
2020-11-23 16:51:05 +01:00
|
|
|
# for j in range(len(infs)):
|
|
|
|
|
# infs[j][i] = i0[i]
|
2020-12-03 00:00:31 +01:00
|
|
|
|
2020-11-23 16:51:05 +01:00
|
|
|
# Result was too similar to previous frame, skip if given.
|
|
|
|
|
#if p[i] < 5e-3 and user_args.skip:
|
|
|
|
|
# if skip_frame % 100 == 0:
|
|
|
|
|
# print("Warning: Your video has {} static frames, "
|
|
|
|
|
# "skipping them may change the duration of the generated video.".format(skip_frame))
|
|
|
|
|
# skip_frame += 1
|
|
|
|
|
# continue
|
|
|
|
|
|
|
|
|
|
# Write results.
|
|
|
|
|
buffer.put(i0[i])
|
|
|
|
|
for inf in infs:
|
|
|
|
|
buffer.put(inf[i])
|
|
|
|
|
|
|
|
|
|
def clear_buffer(user_args):
|
|
|
|
|
global cnt
|
|
|
|
|
while True:
|
|
|
|
|
item = buffer.get()
|
|
|
|
|
if item is None:
|
|
|
|
|
break
|
|
|
|
|
if user_args.png:
|
2020-12-03 00:00:31 +01:00
|
|
|
print('=> {:0>8d}.png'.format(cnt))
|
2020-11-25 12:40:17 +01:00
|
|
|
cv2.imwrite('{}/{:0>8d}.png'.format(interp_output_path, cnt), item[:, :, ::1])
|
2020-11-23 16:51:05 +01:00
|
|
|
cnt += 1
|
|
|
|
|
else:
|
|
|
|
|
vid_out.write(item[:, :, ::-1])
|
|
|
|
|
|
|
|
|
|
def make_inference(model, I0, I1, exp):
|
|
|
|
|
middle = model.inference(I0, I1)
|
|
|
|
|
if exp == 1:
|
|
|
|
|
return [middle]
|
|
|
|
|
first_half = make_inference(model, I0, middle, exp=exp - 1)
|
|
|
|
|
second_half = make_inference(model, middle, I1, exp=exp - 1)
|
|
|
|
|
return [*first_half, middle, *second_half]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ph = ((h - 1) // 32 + 1) * 32
|
|
|
|
|
pw = ((w - 1) // 32 + 1) * 32
|
|
|
|
|
padding = (0, pw - w, 0, ph - h)
|
|
|
|
|
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
|
|
|
print('{} frames in total'.format(tot_frame))
|
|
|
|
|
#pbar = tqdm(total=tot_frame)
|
|
|
|
|
img_list = []
|
|
|
|
|
_thread.start_new_thread(clear_buffer, (args, ))
|
|
|
|
|
while success:
|
|
|
|
|
success, frame = videoCapture.read()
|
|
|
|
|
if success:
|
|
|
|
|
img_list.append(frame)
|
|
|
|
|
if len(img_list) == 5 or (not success and len(img_list) > 1):
|
|
|
|
|
imgs = torch.from_numpy(np.transpose(img_list, (0, 3, 1, 2))).to(device, non_blocking=True).float() / 255.
|
|
|
|
|
I0 = imgs[:-1]
|
|
|
|
|
I1 = imgs[1:]
|
|
|
|
|
p = (F.interpolate(I0, (16, 16), mode='bilinear', align_corners=False)
|
|
|
|
|
- F.interpolate(I1, (16, 16), mode='bilinear', align_corners=False)).abs()
|
|
|
|
|
I0 = F.pad(I0, padding)
|
|
|
|
|
I1 = F.pad(I1, padding)
|
|
|
|
|
inferences = make_inference(model, I0, I1, exp=args.times)
|
|
|
|
|
I0 = np.array(img_list[:-1])
|
|
|
|
|
I1 = np.array(img_list[1:])
|
|
|
|
|
inferences = list(map(lambda x: ((x[:, :, :h, :w] * 255.).byte().cpu().detach().numpy().transpose(0, 2, 3, 1)), inferences))
|
|
|
|
|
|
|
|
|
|
write_frame(I0, inferences, I1, p.mean(3).mean(2).mean(1), args)
|
|
|
|
|
#pbar.update(4)
|
|
|
|
|
img_list = img_list[-1:]
|
|
|
|
|
buffer.put(img_list[0])
|
|
|
|
|
import time
|
|
|
|
|
while(not buffer.empty()):
|
|
|
|
|
time.sleep(0.1)
|
2020-12-03 00:00:31 +01:00
|
|
|
time.sleep(0.5)
|
2020-11-23 16:51:05 +01:00
|
|
|
#pbar.close()
|
|
|
|
|
#if not vid_out is None:
|
|
|
|
|
# vid_out.release()
|