Files
bark-with-voice-clone/generate.ipynb
2023-06-29 21:48:18 -06:00

135 lines
3.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from bark.api import generate_audio\n",
"from transformers import BertTokenizer\n",
"from bark.generation import SAMPLE_RATE, preload_models, codec_decode, generate_coarse, generate_fine, generate_text_semantic\n",
"\n",
"# Enter your prompt and speaker here\n",
"text_prompt = \"Hello, my name is Serpy. And, uh — and I like pizza. [laughs]\"\n",
"voice_name = \"speaker_0\" # use your custom voice name here if you have one\n",
"\n",
"# load the tokenizer\n",
"tokenizer = BertTokenizer.from_pretrained(\"bert-base-multilingual-cased\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# download and load all models\n",
"preload_models(\n",
" text_use_gpu=True,\n",
" text_use_small=False,\n",
" coarse_use_gpu=True,\n",
" coarse_use_small=False,\n",
" fine_use_gpu=True,\n",
" fine_use_small=False,\n",
" codec_use_gpu=True,\n",
" force_reload=False,\n",
" path=\"models\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# simple generation\n",
"audio_array = generate_audio(text_prompt, history_prompt=voice_name, text_temp=0.7, waveform_temp=0.7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generation with more control\n",
"x_semantic = generate_text_semantic(\n",
" text_prompt,\n",
" history_prompt=voice_name,\n",
" temp=0.7,\n",
" top_k=50,\n",
" top_p=0.95,\n",
")\n",
"\n",
"x_coarse_gen = generate_coarse(\n",
" x_semantic,\n",
" history_prompt=voice_name,\n",
" temp=0.7,\n",
" top_k=50,\n",
" top_p=0.95,\n",
")\n",
"x_fine_gen = generate_fine(\n",
" x_coarse_gen,\n",
" history_prompt=voice_name,\n",
" temp=0.5,\n",
")\n",
"audio_array = codec_decode(x_fine_gen)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Audio\n",
"# play audio\n",
"Audio(audio_array, rate=SAMPLE_RATE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scipy.io.wavfile import write as write_wav\n",
"# save audio\n",
"filepath = \"/output/audio.wav\" # change this to your desired output path\n",
"write_wav(filepath, SAMPLE_RATE, audio_array)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}