Files
VoiceCraft/tts_demo.py
2024-04-23 19:07:24 -05:00

183 lines
8.5 KiB
Python

"""
This script will allow you to run TTS inference with Voicecraft
Before getting started, be sure to follow the environment setup.
"""
from inference_tts_scale import inference_one_sample
from models import voicecraft
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
import argparse
import random
import numpy as np
import torchaudio
import torch
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["USER"] = "me" # TODO change this to your username
device = "cuda" if torch.cuda.is_available() else "cpu"
def parse_arguments():
parser = argparse.ArgumentParser(
description="VoiceCraft TTS Inference: see the script for more information on the options")
parser.add_argument("-m", "--model_name", type=str, default="giga330M.pth", choices=[
"giga330M.pth", "gigaHalfLibri330M_TTSEnhanced_max16s.pth", "giga830M.pth"],
help="VoiceCraft model to use")
parser.add_argument("-st", "--silence_tokens", type=int, nargs="*",
default=[1388, 1898, 131], help="Silence token IDs")
parser.add_argument("-casr", "--codec_audio_sr", type=int,
default=16000, help="Codec audio sample rate.")
parser.add_argument("-csr", "--codec_sr", type=int, default=50,
help="Codec sample rate.")
parser.add_argument("-k", "--top_k", type=float,
default=0, help="Top k value.")
parser.add_argument("-p", "--top_p", type=float,
default=0.8, help="Top p value.")
parser.add_argument("-t", "--temperature", type=float,
default=1, help="Temperature value.")
parser.add_argument("-kv", "--kvcache", type=float, choices=[0, 1],
default=0, help="Kvcache value.")
parser.add_argument("-sr", "--stop_repetition", type=int,
default=-1, help="Stop repetition for generation")
parser.add_argument("--sample_batch_size", type=int,
default=3, help="Batch size for sampling")
parser.add_argument("-s", "--seed", type=int,
default=1, help="Seed value.")
parser.add_argument("-bs", "--beam_size", type=int, default=10,
help="beam size for MFA alignment")
parser.add_argument("-rbs", "--retry_beam_size", type=int, default=40,
help="retry beam size for MFA alignment")
parser.add_argument("--output_dir", type=str, default="./generated_tts",
help="directory to save generated audio")
parser.add_argument("-oa", "--original_audio", type=str,
default="./demo/84_121550_000074_000000.wav", help="location of audio file")
parser.add_argument("-ot", "--original_transcript", type=str,
default="But when I had approached so near to them The common object, which the sense deceives, Lost not by distance any of its marks,",
help="original transcript")
parser.add_argument("-tt", "--target_transcript", type=str,
default="But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks,",
help="target transcript")
parser.add_argument("-co", "--cut_off_sec", type=float, default=3.6,
help="cut off point in seconds for input prompt")
args = parser.parse_args()
return args
args = parse_arguments()
voicecraft_name = args.model_name
# hyperparameters for inference
codec_audio_sr = args.codec_audio_sr
codec_sr = args.codec_sr
top_k = args.top_k
top_p = args.top_p # defaults to 0.9 can also try 0.8, but 0.9 seems to work better
temperature = args.temperature
silence_tokens = args.silence_tokens
kvcache = args.kvcache # NOTE if OOM, change this to 0, or try the 330M model
# NOTE adjust the below three arguments if the generation is not as good
# NOTE if the model generate long silence, reduce the stop_repetition to 3, 2 or even 1
stop_repetition = args.stop_repetition
# NOTE: if the if there are long silence or unnaturally strecthed words,
# increase sample_batch_size to 4 or higher. What this will do to the model is that the
# model will run sample_batch_size examples of the same audio, and pick the one that's the shortest.
# So if the speech rate of the generated is too fast change it to a smaller number.
sample_batch_size = args.sample_batch_size
seed = args.seed # change seed if you are still unhappy with the result
# load the model
model = voicecraft.VoiceCraft.from_pretrained(
f"pyp1/VoiceCraft_{voicecraft_name.replace('.pth', '')}")
phn2num = model.args.phn2num
config = vars(model.args)
model.to(device)
encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th"
if not os.path.exists(encodec_fn):
os.system(
f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th")
os.system(
f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th")
# will also put the neural codec model on gpu
audio_tokenizer = AudioTokenizer(signature=encodec_fn, device=device)
text_tokenizer = TextTokenizer(backend="espeak")
# Prepare your audio
# point to the original audio whose speech you want to clone
# write down the transcript for the file, or run whisper to get the transcript (and you can modify it if it's not accurate), save it as a .txt file
orig_audio = args.original_audio
orig_transcript = args.original_transcript
# move the audio and transcript to temp folder
temp_folder = "./demo/temp"
os.makedirs(temp_folder, exist_ok=True)
os.system(f"cp {orig_audio} {temp_folder}")
filename = os.path.splitext(orig_audio.split("/")[-1])[0]
with open(f"{temp_folder}/{filename}.txt", "w") as f:
f.write(orig_transcript)
# run MFA to get the alignment
align_temp = f"{temp_folder}/mfa_alignments"
beam_size = args.beam_size
retry_beam_size = args.retry_beam_size
os.system("source ~/.bashrc && \
conda activate voicecraft && \
mfa align -v --clean -j 1 --output_format csv {temp_folder} \
english_us_arpa english_us_arpa {align_temp} --beam {beam_size} --retry_beam {retry_beam_size}"
)
# if the above fails, it could be because the audio is too hard for the alignment model,
# increasing the beam size usually solves the issue
# take a look at demo/temp/mfa_alignment, decide which part of the audio to use as prompt
cut_off_sec = args.cut_off_sec # NOTE: according to forced-alignment file demo/temp/mfa_alignments/5895_34622_000026_000002.wav, the word "strength" stop as 3.561 sec, so we use first 3.6 sec as the prompt. this should be different for different audio
target_transcript = args.target_transcript
# NOTE: 3 sec of reference is generally enough for high quality voice cloning, but longer is generally better, try e.g. 3~6 sec.
audio_fn = f"{temp_folder}/{filename}.wav"
info = torchaudio.info(audio_fn)
audio_dur = info.num_frames / info.sample_rate
assert cut_off_sec < audio_dur, f"cut_off_sec {cut_off_sec} is larger than the audio duration {audio_dur}"
prompt_end_frame = int(cut_off_sec * info.sample_rate)
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_everything(seed)
# inference
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache,
"codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr, "silence_tokens": silence_tokens, "sample_batch_size": sample_batch_size}
concated_audio, gen_audio = inference_one_sample(model, argparse.Namespace(
**config), phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_transcript, device, decode_config, prompt_end_frame)
# save segments for comparison
concated_audio, gen_audio = concated_audio[0].cpu(), gen_audio[0].cpu()
# logging.info(f"length of the resynthesize orig audio: {orig_audio.shape}")
# save the audio
# output_dir
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
seg_save_fn_gen = f"{output_dir}/{os.path.basename(audio_fn)[:-4]}_gen_seed{seed}.wav"
seg_save_fn_concat = f"{output_dir}/{os.path.basename(audio_fn)[:-4]}_concat_seed{seed}.wav"
torchaudio.save(seg_save_fn_gen, gen_audio, codec_audio_sr)
torchaudio.save(seg_save_fn_concat, concated_audio, codec_audio_sr)
# you might get warnings like WARNING:phonemizer:words count mismatch on 300.0% of the lines (3/1), this can be safely ignored