mirror of
https://github.com/voice-cloning-app/Voice-Cloning-App.git
synced 2025-12-16 19:58:00 +01:00
604 lines
21 KiB
Python
604 lines
21 KiB
Python
import os
|
|
import io
|
|
import zipfile
|
|
import traceback
|
|
import torch
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
import re
|
|
|
|
from main import app, paths
|
|
from application.utils import (
|
|
start_progress_thread,
|
|
serve_file,
|
|
get_next_url,
|
|
get_suffix,
|
|
delete_folder,
|
|
import_dataset,
|
|
)
|
|
from dataset import AUDIO_FOLDER, UNLABELLED_FOLDER, METADATA_FILE, INFO_FILE, CHARACTER_ENCODING
|
|
from dataset.create_dataset import create_dataset
|
|
from dataset.utils import add_suffix
|
|
from dataset.extend_existing_dataset import extend_existing_dataset
|
|
from dataset.analysis import get_total_audio_duration, validate_dataset, update_dataset_info
|
|
from dataset.transcribe import Silero, DeepSpeech, SILERO_LANGUAGES
|
|
from training import TRAIN_FILE, VALIDATION_FILE
|
|
from training.train import train, TRAINING_PATH, DEFAULT_ALPHABET
|
|
from training.utils import (
|
|
get_available_memory,
|
|
get_gpu_memory,
|
|
get_batch_size,
|
|
load_symbols,
|
|
generate_timelapse_gif,
|
|
create_trainlist_vallist_files,
|
|
)
|
|
from training.hifigan.train import BATCH_SIZE_PER_GB, CONFIG_FILE
|
|
from training.hifigan.train import train as train_hifigan
|
|
from training.hifigan.utils import get_checkpoint_options
|
|
from synthesis.synthesize import load_model, synthesize
|
|
from synthesis.vocoders import Hifigan
|
|
|
|
from flask import redirect, render_template, request, send_file
|
|
|
|
|
|
URLS = {"/": "Build dataset", "/train": "Train", "/synthesis-setup": "Synthesis"}
|
|
ALPHABET_FOLDER = "alphabets"
|
|
TEXT_FILE = "text.txt"
|
|
SUBTITLE_FILE = "sub.srt"
|
|
CHECKPOINT_FOLDER = "checkpoints"
|
|
GRAPH_FILE = "graph.png"
|
|
RESULTS_FILE = "out.wav"
|
|
TEMP_DATASET_UPLOAD = "temp.zip"
|
|
TRANSCRIPTION_MODEL = "model.pbmm"
|
|
ENGLISH_LANGUAGE = "English"
|
|
ALPHABET_FILE = "alphabet.txt"
|
|
|
|
model = None
|
|
vocoder = None
|
|
symbols = None
|
|
|
|
|
|
def get_languages():
|
|
silero_languages = {language: True for language in SILERO_LANGUAGES}
|
|
custom_models = {
|
|
language: os.path.isfile(os.path.join(paths["languages"], language, TRANSCRIPTION_MODEL))
|
|
for language in os.listdir(paths["languages"])
|
|
}
|
|
return {**silero_languages, **custom_models}
|
|
|
|
|
|
def get_checkpoints():
|
|
# Checkpoints ordered by name (i.e. checkpoint_0, checkpoint_1000 etc.)
|
|
return {
|
|
model: sorted(
|
|
os.listdir(os.path.join(paths["models"], model)),
|
|
key=lambda name: int(name.split("_")[1]) if "_" in name and name.split("_")[1].isdigit() else 0,
|
|
reverse=True,
|
|
)
|
|
for model in os.listdir(paths["models"])
|
|
if os.listdir(os.path.join(paths["models"], model))
|
|
}
|
|
|
|
|
|
def get_hifigan_checkpoints():
|
|
return {
|
|
model: get_checkpoint_options(os.path.join(paths["hifigan_training"], model))
|
|
for model in os.listdir(paths["hifigan_training"])
|
|
if os.listdir(os.path.join(paths["hifigan_training"], model))
|
|
}
|
|
|
|
|
|
def get_symbols(language):
|
|
if language == ENGLISH_LANGUAGE:
|
|
return DEFAULT_ALPHABET
|
|
elif language in SILERO_LANGUAGES:
|
|
return load_symbols(os.path.join(ALPHABET_FOLDER, f"{language}.txt"))
|
|
else:
|
|
return load_symbols(os.path.join(paths["languages"], language, ALPHABET_FILE))
|
|
|
|
|
|
@app.errorhandler(Exception)
|
|
def handle_bad_request(e):
|
|
error = {"type": e.__class__.__name__, "text": str(e), "stacktrace": traceback.format_exc()}
|
|
return render_template("error.html", error=error)
|
|
|
|
|
|
@app.context_processor
|
|
def inject_data():
|
|
return {"urls": URLS, "path": request.path}
|
|
|
|
|
|
# Dataset
|
|
@app.route("/", methods=["GET"])
|
|
def get_create_dataset():
|
|
return render_template("index.html", datasets=os.listdir(paths["datasets"]), languages=get_languages())
|
|
|
|
|
|
@app.route("/", methods=["POST"])
|
|
def create_dataset_post():
|
|
min_confidence = float(request.form["confidence"])
|
|
language = request.form["language"]
|
|
combine_clips = request.form.get("combine_clips") is not None
|
|
min_length = float(request.form["min_length"])
|
|
max_length = float(request.form["max_length"])
|
|
transcription_model = (
|
|
Silero(language)
|
|
if language in SILERO_LANGUAGES
|
|
else DeepSpeech(os.path.join(paths["languages"], language, TRANSCRIPTION_MODEL))
|
|
)
|
|
symbols = get_symbols(language)
|
|
text_file = SUBTITLE_FILE if request.files["text_file"].filename.endswith(".srt") else TEXT_FILE
|
|
|
|
if request.form["name"]:
|
|
output_folder = os.path.join(paths["datasets"], request.form["name"])
|
|
if os.path.exists(output_folder):
|
|
request.files = None
|
|
raise Exception("Dataset name taken")
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
text_path = os.path.join(output_folder, text_file)
|
|
audio_path = os.path.join(output_folder, request.files["audio_file"].filename)
|
|
|
|
with open(text_path, "w", encoding=CHARACTER_ENCODING) as f:
|
|
f.write(request.files["text_file"].read().decode(CHARACTER_ENCODING, "ignore").replace("\r\n", "\n"))
|
|
request.files["audio_file"].save(audio_path)
|
|
start_progress_thread(
|
|
create_dataset,
|
|
text_path=text_path,
|
|
audio_path=audio_path,
|
|
transcription_model=transcription_model,
|
|
output_folder=output_folder,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
min_confidence=min_confidence,
|
|
combine_clips=combine_clips,
|
|
symbols=symbols,
|
|
)
|
|
else:
|
|
output_folder = os.path.join(paths["datasets"], request.form["dataset"])
|
|
suffix = get_suffix()
|
|
text_path = os.path.join(output_folder, add_suffix(text_file, suffix))
|
|
audio_path = os.path.join(output_folder, add_suffix(request.files["audio_file"].filename, suffix))
|
|
|
|
with open(text_path, "w", encoding=CHARACTER_ENCODING) as f:
|
|
f.write(request.files["text_file"].read().decode(CHARACTER_ENCODING, "ignore").replace("\r\n", "\n"))
|
|
request.files["audio_file"].save(audio_path)
|
|
|
|
start_progress_thread(
|
|
extend_existing_dataset,
|
|
text_path=text_path,
|
|
audio_path=audio_path,
|
|
transcription_model=transcription_model,
|
|
output_folder=output_folder,
|
|
suffix=suffix,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
min_confidence=min_confidence,
|
|
combine_clips=combine_clips,
|
|
symbols=symbols,
|
|
)
|
|
|
|
return render_template("progress.html", next_url=get_next_url(URLS, request.path))
|
|
|
|
|
|
@app.route("/dataset-duration", methods=["GET"])
|
|
def get_dataset_duration():
|
|
dataset = request.values["dataset"]
|
|
dataset_error = validate_dataset(os.path.join(paths["datasets"], dataset))
|
|
if not dataset_error:
|
|
return get_total_audio_duration(os.path.join(paths["datasets"], dataset, INFO_FILE))
|
|
else:
|
|
return {"error": dataset_error}
|
|
|
|
|
|
# Training
|
|
@app.route("/train", methods=["GET"])
|
|
def get_train():
|
|
cuda_enabled = torch.cuda.is_available()
|
|
|
|
if cuda_enabled:
|
|
available_memory_gb = get_available_memory()
|
|
batch_size = get_batch_size(available_memory_gb)
|
|
else:
|
|
batch_size = None
|
|
|
|
return render_template(
|
|
"train.html",
|
|
cuda_enabled=cuda_enabled,
|
|
batch_size=batch_size,
|
|
datasets=os.listdir(paths["datasets"]),
|
|
checkpoints=get_checkpoints(),
|
|
languages=get_languages(),
|
|
)
|
|
|
|
|
|
@app.route("/train", methods=["POST"])
|
|
def train_post():
|
|
language = request.form["language"]
|
|
symbols = get_symbols(language)
|
|
dataset_name = request.form["dataset"]
|
|
epochs = request.form["epochs"]
|
|
batch_size = request.form["batch_size"]
|
|
early_stopping = request.form.get("early_stopping") is not None
|
|
iters_per_checkpoint = request.form["checkpoint_frequency"]
|
|
iters_per_backup_checkpoint = request.form["backup_checkpoint_frequency"]
|
|
train_size = 1 - float(request.form["validation_size"])
|
|
alignment_sentence = request.form["alignment_sentence"]
|
|
multi_gpu = request.form.get("multi_gpu") is not None
|
|
checkpoint_path = (
|
|
os.path.join(paths["models"], dataset_name, request.form["checkpoint"])
|
|
if request.form.get("checkpoint")
|
|
else None
|
|
)
|
|
|
|
metadata_path = os.path.join(paths["datasets"], dataset_name, METADATA_FILE)
|
|
use_metadata = os.path.isfile(metadata_path)
|
|
trainlist_path = os.path.join(paths["datasets"], dataset_name, TRAIN_FILE)
|
|
vallist_path = os.path.join(paths["datasets"], dataset_name, VALIDATION_FILE)
|
|
audio_folder = os.path.join(paths["datasets"], dataset_name, AUDIO_FOLDER)
|
|
checkpoint_folder = os.path.join(paths["models"], dataset_name)
|
|
|
|
if request.files.get("pretrained_model"):
|
|
transfer_learning_path = os.path.join("data", "pretrained.pt")
|
|
request.files["pretrained_model"].save(transfer_learning_path)
|
|
else:
|
|
transfer_learning_path = None
|
|
|
|
start_progress_thread(
|
|
train,
|
|
metadata_path=metadata_path if use_metadata else None,
|
|
trainlist_path=trainlist_path if not use_metadata else None,
|
|
vallist_path=vallist_path if not use_metadata else None,
|
|
audio_directory=audio_folder,
|
|
output_directory=checkpoint_folder,
|
|
symbols=symbols,
|
|
checkpoint_path=checkpoint_path,
|
|
transfer_learning_path=transfer_learning_path,
|
|
epochs=int(epochs),
|
|
batch_size=int(batch_size),
|
|
early_stopping=early_stopping,
|
|
multi_gpu=multi_gpu,
|
|
iters_per_checkpoint=int(iters_per_checkpoint),
|
|
iters_per_backup_checkpoint=int(iters_per_backup_checkpoint),
|
|
train_size=train_size,
|
|
alignment_sentence=alignment_sentence,
|
|
)
|
|
|
|
return render_template(
|
|
"progress.html", next_url=get_next_url(URLS, request.path), voice=Path(checkpoint_folder).stem
|
|
)
|
|
|
|
|
|
@app.route("/alignment-timelapse", methods=["GET"])
|
|
def download_alignment_timelapse():
|
|
name = request.args.get("name")
|
|
folder = os.path.join(TRAINING_PATH, name)
|
|
output = os.path.join(TRAINING_PATH, f"{name}-training.gif")
|
|
generate_timelapse_gif(folder, output)
|
|
return serve_file(output, f"{name}-training.gif", "image/png", as_attachment=False)
|
|
|
|
|
|
# Synthesis
|
|
@app.route("/synthesis-setup", methods=["GET"])
|
|
def get_synthesis_setup():
|
|
return render_template(
|
|
"synthesis-setup.html",
|
|
hifigan_models=os.listdir(paths["hifigan"]),
|
|
hifigan_custom_models=get_hifigan_checkpoints(),
|
|
models=os.listdir(paths["models"]),
|
|
checkpoints=get_checkpoints(),
|
|
languages=get_languages(),
|
|
)
|
|
|
|
|
|
@app.route("/synthesis-setup", methods=["POST"])
|
|
def synthesis_setup_post():
|
|
global model, vocoder, symbols
|
|
dataset_name = request.form["model"]
|
|
language = request.form["language"]
|
|
symbols = get_symbols(language)
|
|
checkpoint_folder = os.path.join(paths["models"], dataset_name)
|
|
checkpoint = os.path.join(checkpoint_folder, request.form["checkpoint"])
|
|
model = load_model(checkpoint)
|
|
|
|
if request.form["vocoder"].startswith("custom-"):
|
|
checkpoint_iteration = request.form["vocoder"].split("-")[1]
|
|
model_path = os.path.join(paths["hifigan_training"], dataset_name, f"g_{checkpoint_iteration}")
|
|
model_config_path = CONFIG_FILE
|
|
else:
|
|
hifigan_folder = os.path.join(paths["hifigan"], request.form["vocoder"])
|
|
model_path = os.path.join(hifigan_folder, "model.pt")
|
|
model_config_path = os.path.join(hifigan_folder, "config.json")
|
|
|
|
vocoder = Hifigan(model_path, model_config_path)
|
|
return redirect("/synthesis")
|
|
|
|
|
|
@app.route("/data/<path:path>")
|
|
def get_file(path):
|
|
subfolder = path.split("/")[0]
|
|
subpath = path.split("/")[1:-1]
|
|
filename = path.split("/")[-1]
|
|
mimetype = "image/png" if filename.endswith("png") else "audio/wav"
|
|
filepath = os.path.join(paths[subfolder], *subpath, filename)
|
|
return serve_file(filepath, filename, mimetype)
|
|
|
|
|
|
@app.route("/synthesis", methods=["GET", "POST"])
|
|
def synthesis_post():
|
|
global model, vocoder, symbols
|
|
if not model or not vocoder or not symbols:
|
|
return redirect("/synthesis-setup")
|
|
|
|
if request.method == "GET":
|
|
return render_template("synthesis.html")
|
|
else:
|
|
text = request.form.getlist("text")
|
|
if len(text) == 1:
|
|
text = text[0]
|
|
method = request.form["text_method"]
|
|
split_text = method == "paragraph"
|
|
parent_folder = os.path.join(paths["results"], datetime.now().strftime("%Y-%m"))
|
|
os.makedirs(parent_folder, exist_ok=True)
|
|
first_line = text[0] if type(text) == list else text
|
|
results_folder = os.path.join(
|
|
parent_folder, get_suffix() + "-" + re.sub("[^0-9a-zA-Z _]+", "", first_line.replace(" ", "_"))[:20]
|
|
)
|
|
os.makedirs(results_folder)
|
|
graph_path = os.path.join(results_folder, GRAPH_FILE)
|
|
audio_path = os.path.join(results_folder, RESULTS_FILE)
|
|
graph_web_path = os.path.relpath(graph_path).replace("\\", "/")
|
|
audio_web_path = os.path.relpath(audio_path).replace("\\", "/")
|
|
silence = float(request.form["silence"])
|
|
max_decoder_steps = int(request.form["max_decoder_steps"])
|
|
|
|
synthesize(
|
|
model,
|
|
text,
|
|
symbols,
|
|
graph_path,
|
|
audio_path,
|
|
vocoder,
|
|
silence,
|
|
max_decoder_steps=max_decoder_steps,
|
|
split_text=split_text,
|
|
)
|
|
return render_template(
|
|
"synthesis.html",
|
|
text=text,
|
|
method=method,
|
|
graph=graph_web_path,
|
|
audio=audio_web_path,
|
|
silence=silence,
|
|
max_decoder_steps=max_decoder_steps,
|
|
)
|
|
|
|
|
|
# Train hifigan
|
|
@app.route("/train-hifigan", methods=["GET"])
|
|
def get_train_hifigan():
|
|
cuda_enabled = torch.cuda.is_available()
|
|
|
|
if cuda_enabled:
|
|
available_memory = get_gpu_memory(0)
|
|
batch_size = int(available_memory * BATCH_SIZE_PER_GB)
|
|
else:
|
|
batch_size = None
|
|
|
|
return render_template(
|
|
"train-hifigan.html",
|
|
cuda_enabled=cuda_enabled,
|
|
batch_size=batch_size,
|
|
datasets=os.listdir(paths["datasets"]),
|
|
checkpoints=get_hifigan_checkpoints(),
|
|
)
|
|
|
|
|
|
# Train hifigan
|
|
@app.route("/train-hifigan", methods=["POST"])
|
|
def train_hifigan_post():
|
|
dataset_name = request.form["dataset"]
|
|
epochs = request.form["epochs"]
|
|
batch_size = request.form["batch_size"]
|
|
iters_per_checkpoint = request.form["checkpoint_frequency"]
|
|
iters_per_backup_checkpoint = request.form["backup_checkpoint_frequency"]
|
|
train_size = 1 - float(request.form["validation_size"])
|
|
|
|
audio_folder = os.path.join(paths["datasets"], dataset_name, AUDIO_FOLDER)
|
|
output_directory = os.path.join(paths["hifigan_training"], dataset_name)
|
|
|
|
if request.form.get("checkpoint_iteration"):
|
|
checkpoint_g = os.path.join(
|
|
paths["hifigan_training"], dataset_name, f"g_{request.form['checkpoint_iteration']}"
|
|
)
|
|
checkpoint_do = os.path.join(
|
|
paths["hifigan_training"], dataset_name, f"do_{request.form['checkpoint_iteration']}"
|
|
)
|
|
elif request.files.get("pretrained_model_g"):
|
|
checkpoint_g = os.path.join("data", "pretrained_model_g.pt")
|
|
checkpoint_do = os.path.join("data", "pretrained_model_do.pt")
|
|
request.files["pretrained_model_g"].save(checkpoint_g)
|
|
request.files["pretrained_model_do"].save(checkpoint_do)
|
|
else:
|
|
checkpoint_g = None
|
|
checkpoint_do = None
|
|
|
|
start_progress_thread(
|
|
train_hifigan,
|
|
audio_folder=audio_folder,
|
|
output_directory=output_directory,
|
|
checkpoint_g=checkpoint_g,
|
|
checkpoint_do=checkpoint_do,
|
|
epochs=int(epochs),
|
|
batch_size=int(batch_size),
|
|
iters_per_checkpoint=int(iters_per_checkpoint),
|
|
iters_per_backup_checkpoint=int(iters_per_backup_checkpoint),
|
|
train_size=train_size,
|
|
)
|
|
|
|
return render_template("progress.html", next_url="/synthesis")
|
|
|
|
|
|
# Manage datasets
|
|
@app.route("/manage-datasets", methods=["GET"])
|
|
def manage_datasets():
|
|
return render_template(
|
|
"manage-datasets.html", datasets=os.listdir(paths["datasets"]), selected=request.values.get("dataset")
|
|
)
|
|
|
|
|
|
@app.route("/unlabelled-clips", methods=["GET"])
|
|
def unlabelled_clips():
|
|
dataset = request.values["dataset"]
|
|
unlabelled_folder = os.path.join(paths["datasets"], dataset, UNLABELLED_FOLDER)
|
|
unlabelled_clips = os.listdir(unlabelled_folder) if os.path.isdir(unlabelled_folder) else []
|
|
return {"unlabelled": unlabelled_clips}
|
|
|
|
|
|
@app.route("/label-clip", methods=["POST"])
|
|
def label_clip():
|
|
dataset = request.values["dataset"]
|
|
clip = request.values["unlabelled_clip"]
|
|
text = request.values["sentence"]
|
|
|
|
# Update dataset size
|
|
update_dataset_info(
|
|
os.path.join(paths["datasets"], dataset, METADATA_FILE),
|
|
os.path.join(paths["datasets"], dataset, INFO_FILE),
|
|
os.path.join(paths["datasets"], dataset, UNLABELLED_FOLDER, clip),
|
|
text,
|
|
)
|
|
|
|
# Add to metadata
|
|
with open(os.path.join(paths["datasets"], dataset, METADATA_FILE), "a", encoding=CHARACTER_ENCODING) as f:
|
|
f.write(f"{clip}|{text}\n")
|
|
|
|
# Move clip
|
|
os.rename(
|
|
os.path.join(paths["datasets"], dataset, UNLABELLED_FOLDER, clip),
|
|
os.path.join(paths["datasets"], dataset, AUDIO_FOLDER, clip),
|
|
)
|
|
|
|
return redirect(f"/manage-datasets?dataset={dataset}")
|
|
|
|
|
|
# Import-export
|
|
@app.route("/import-export", methods=["GET"])
|
|
def import_export():
|
|
return render_template(
|
|
"import-export.html",
|
|
datasets=os.listdir(paths["datasets"]),
|
|
models=os.listdir(paths["models"]),
|
|
checkpoints=get_checkpoints(),
|
|
)
|
|
|
|
|
|
@app.route("/upload-dataset", methods=["POST"])
|
|
def upload_dataset():
|
|
dataset = request.files["dataset"]
|
|
dataset.save(TEMP_DATASET_UPLOAD)
|
|
dataset_name = request.values["name"]
|
|
dataset_directory = os.path.join(paths["datasets"], dataset_name)
|
|
audio_folder = os.path.join(dataset_directory, AUDIO_FOLDER)
|
|
assert not os.path.isdir(dataset_directory), "Output folder already exists"
|
|
|
|
start_progress_thread(
|
|
import_dataset, dataset=TEMP_DATASET_UPLOAD, dataset_directory=dataset_directory, audio_folder=audio_folder
|
|
)
|
|
|
|
return render_template("progress.html", next_url="/import-export")
|
|
|
|
|
|
@app.route("/download-dataset", methods=["POST"])
|
|
def download_dataset():
|
|
dataset_name = request.values["dataset"]
|
|
dataset_directory = os.path.join(paths["datasets"], dataset_name)
|
|
data = io.BytesIO()
|
|
create_trainlist_vallist_files(dataset_directory, os.path.join(dataset_directory, METADATA_FILE))
|
|
|
|
with zipfile.ZipFile(data, mode="w") as z:
|
|
z.write(os.path.join(dataset_directory, METADATA_FILE), METADATA_FILE)
|
|
if os.path.isfile(os.path.join(dataset_directory, INFO_FILE)):
|
|
z.write(os.path.join(dataset_directory, INFO_FILE), INFO_FILE)
|
|
|
|
audio_directory = os.path.join(dataset_directory, AUDIO_FOLDER)
|
|
for audiofile in os.listdir(audio_directory):
|
|
z.write(os.path.join(audio_directory, audiofile), os.path.join(AUDIO_FOLDER, audiofile))
|
|
|
|
z.write(os.path.join(dataset_directory, TRAIN_FILE), TRAIN_FILE)
|
|
z.write(os.path.join(dataset_directory, VALIDATION_FILE), VALIDATION_FILE)
|
|
|
|
data.seek(0)
|
|
|
|
return send_file(
|
|
data,
|
|
mimetype="application/zip",
|
|
as_attachment=True,
|
|
attachment_filename=f'{dataset_name.replace(" ", "_")}.zip',
|
|
)
|
|
|
|
|
|
@app.route("/upload-model", methods=["POST"])
|
|
def upload_model():
|
|
model_name = request.values["name"]
|
|
model_directory = os.path.join(paths["models"], model_name)
|
|
os.makedirs(model_directory, exist_ok=False)
|
|
|
|
model_path = os.path.join(model_directory, "model.pt")
|
|
request.files["model_upload"].save(model_path)
|
|
|
|
return render_template("import-export.html", message=f"Successfully uploaded {model_name} model")
|
|
|
|
|
|
@app.route("/download-model", methods=["POST"])
|
|
def download_model():
|
|
model_name = request.values["model"]
|
|
model_path = os.path.join(paths["models"], model_name, request.values["checkpoint"])
|
|
|
|
return send_file(model_path, as_attachment=True, attachment_filename=request.values["checkpoint"])
|
|
|
|
|
|
# Settings
|
|
@app.route("/settings", methods=["GET"])
|
|
def get_settings():
|
|
return render_template(
|
|
"settings.html",
|
|
datasets=os.listdir(paths["datasets"]),
|
|
models=os.listdir(paths["models"]),
|
|
)
|
|
|
|
|
|
@app.route("/delete-dataset", methods=["POST"])
|
|
def delete_dataset_post():
|
|
delete_folder(os.path.join(paths["datasets"], request.values["dataset"]))
|
|
return redirect("/settings")
|
|
|
|
|
|
@app.route("/delete-model", methods=["POST"])
|
|
def delete_model_post():
|
|
delete_folder(os.path.join(paths["models"], request.values["model"]))
|
|
return redirect("/settings")
|
|
|
|
|
|
@app.route("/upload-language", methods=["POST"])
|
|
def upload_language():
|
|
language = request.values["name"]
|
|
language_dir = os.path.join(paths["languages"], language)
|
|
os.makedirs(language_dir, exist_ok=True)
|
|
if request.files["model"]:
|
|
request.files["model"].save(os.path.join(language_dir, TRANSCRIPTION_MODEL))
|
|
request.files["alphabet"].save(os.path.join(language_dir, ALPHABET_FILE))
|
|
return redirect("/settings")
|
|
|
|
|
|
@app.route("/add-vocoder", methods=["POST"])
|
|
def add_vocoder():
|
|
name = request.values["name"]
|
|
hifigan_folder = os.path.join(paths["hifigan"], name)
|
|
os.makedirs(hifigan_folder)
|
|
model_path = os.path.join(hifigan_folder, "model.pt")
|
|
model_config_path = os.path.join(hifigan_folder, "config.json")
|
|
request.files["hifigan-model"].save(model_path)
|
|
request.files["hifigan-config"].save(model_config_path)
|
|
return redirect("/settings")
|