mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-15 16:07:51 +01:00
167 lines
6.7 KiB
Python
167 lines
6.7 KiB
Python
import os
|
|
import glob
|
|
from PIL import Image
|
|
|
|
import torch
|
|
import yaml
|
|
import cv2
|
|
import importlib
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from inpainter.util.tensor_util import resize_frames, resize_masks
|
|
|
|
|
|
class BaseInpainter:
|
|
def __init__(self, E2FGVI_checkpoint, device) -> None:
|
|
"""
|
|
E2FGVI_checkpoint: checkpoint of inpainter (version hq, with multi-resolution support)
|
|
"""
|
|
net = importlib.import_module('inpainter.model.e2fgvi_hq')
|
|
self.model = net.InpaintGenerator().to(device)
|
|
self.model.load_state_dict(torch.load(E2FGVI_checkpoint, map_location=device))
|
|
self.model.eval()
|
|
self.device = device
|
|
# load configurations
|
|
with open("inpainter/config/config.yaml", 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
self.neighbor_stride = config['neighbor_stride']
|
|
self.num_ref = config['num_ref']
|
|
self.step = config['step']
|
|
|
|
# sample reference frames from the whole video
|
|
def get_ref_index(self, f, neighbor_ids, length):
|
|
ref_index = []
|
|
if self.num_ref == -1:
|
|
for i in range(0, length, self.step):
|
|
if i not in neighbor_ids:
|
|
ref_index.append(i)
|
|
else:
|
|
start_idx = max(0, f - self.step * (self.num_ref // 2))
|
|
end_idx = min(length, f + self.step * (self.num_ref // 2))
|
|
for i in range(start_idx, end_idx + 1, self.step):
|
|
if i not in neighbor_ids:
|
|
if len(ref_index) > self.num_ref:
|
|
break
|
|
ref_index.append(i)
|
|
return ref_index
|
|
|
|
def inpaint(self, frames, masks, dilate_radius=15, ratio=1):
|
|
"""
|
|
frames: numpy array, T, H, W, 3
|
|
masks: numpy array, T, H, W
|
|
dilate_radius: radius when applying dilation on masks
|
|
ratio: down-sample ratio
|
|
|
|
Output:
|
|
inpainted_frames: numpy array, T, H, W, 3
|
|
"""
|
|
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
|
|
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
|
|
masks = masks.copy()
|
|
masks = np.clip(masks, 0, 1)
|
|
kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
|
|
masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
|
|
|
|
T, H, W = masks.shape
|
|
# size: (w, h)
|
|
if ratio == 1:
|
|
size = None
|
|
else:
|
|
size = [int(W*ratio), int(H*ratio)]
|
|
if size[0] % 2 > 0:
|
|
size[0] += 1
|
|
if size[1] % 2 > 0:
|
|
size[1] += 1
|
|
|
|
masks = np.expand_dims(masks, axis=3) # expand to T, H, W, 1
|
|
binary_masks = resize_masks(masks, tuple(size))
|
|
frames = resize_frames(frames, tuple(size)) # T, H, W, 3
|
|
# frames and binary_masks are numpy arrays
|
|
|
|
h, w = frames.shape[1:3]
|
|
video_length = T
|
|
|
|
# convert to tensor
|
|
imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
|
|
masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
|
|
|
|
imgs, masks = imgs.to(self.device), masks.to(self.device)
|
|
comp_frames = [None] * video_length
|
|
|
|
for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
|
|
neighbor_ids = [
|
|
i for i in range(max(0, f - self.neighbor_stride),
|
|
min(video_length, f + self.neighbor_stride + 1))
|
|
]
|
|
ref_ids = self.get_ref_index(f, neighbor_ids, video_length)
|
|
selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
|
|
selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
|
|
with torch.no_grad():
|
|
masked_imgs = selected_imgs * (1 - selected_masks)
|
|
mod_size_h = 60
|
|
mod_size_w = 108
|
|
h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
|
|
w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [3])],
|
|
3)[:, :, :, :h + h_pad, :]
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [4])],
|
|
4)[:, :, :, :, :w + w_pad]
|
|
pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
|
|
pred_imgs = pred_imgs[:, :, :h, :w]
|
|
pred_imgs = (pred_imgs + 1) / 2
|
|
pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
|
|
for i in range(len(neighbor_ids)):
|
|
idx = neighbor_ids[i]
|
|
img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
|
|
1 - binary_masks[idx])
|
|
if comp_frames[idx] is None:
|
|
comp_frames[idx] = img
|
|
else:
|
|
comp_frames[idx] = comp_frames[idx].astype(
|
|
np.float32) * 0.5 + img.astype(np.float32) * 0.5
|
|
|
|
inpainted_frames = np.stack(comp_frames, 0)
|
|
return inpainted_frames.astype(np.uint8)
|
|
|
|
if __name__ == '__main__':
|
|
|
|
frame_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/parkour', '*.jpg'))
|
|
frame_path.sort()
|
|
mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/Annotations/480p/parkour', "*.png"))
|
|
mask_path.sort()
|
|
save_path = '/ssd1/gaomingqi/results/inpainting/parkour'
|
|
|
|
if not os.path.exists(save_path):
|
|
os.mkdir(save_path)
|
|
|
|
frames = []
|
|
masks = []
|
|
for fid, mid in zip(frame_path, mask_path):
|
|
frames.append(Image.open(fid).convert('RGB'))
|
|
masks.append(Image.open(mid).convert('P'))
|
|
|
|
frames = np.stack(frames, 0)
|
|
masks = np.stack(masks, 0)
|
|
|
|
# ----------------------------------------------
|
|
# how to use
|
|
# ----------------------------------------------
|
|
# 1/3: set checkpoint and device
|
|
checkpoint = '/ssd1/gaomingqi/checkpoints/E2FGVI-HQ-CVPR22.pth'
|
|
device = 'cuda:6'
|
|
# 2/3: initialise inpainter
|
|
base_inpainter = BaseInpainter(checkpoint, device)
|
|
# 3/3: inpainting (frames: numpy array, T, H, W, 3; masks: numpy array, T, H, W)
|
|
# ratio: (0, 1], ratio for down sample, default value is 1
|
|
inpainted_frames = base_inpainter.inpaint(frames, masks, ratio=1) # numpy array, T, H, W, 3
|
|
# ----------------------------------------------
|
|
# end
|
|
# ----------------------------------------------
|
|
# save
|
|
for ti, inpainted_frame in enumerate(inpainted_frames):
|
|
frame = Image.fromarray(inpainted_frame).convert('RGB')
|
|
frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))
|