mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-16 08:27:49 +01:00
252 lines
8.1 KiB
Python
252 lines
8.1 KiB
Python
import gradio as gr
|
|
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
|
|
import argparse
|
|
import cv2
|
|
import time
|
|
from PIL import Image
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
sys.path.append(sys.path[0]+"/tracker")
|
|
sys.path.append(sys.path[0]+"/tracker/model")
|
|
from track_anything import TrackingAnything
|
|
from track_anything import parse_augment
|
|
import requests
|
|
|
|
def download_checkpoint(url, folder, filename):
|
|
os.makedirs(folder, exist_ok=True)
|
|
filepath = os.path.join(folder, filename)
|
|
|
|
if not os.path.exists(filepath):
|
|
print("download checkpoints ......")
|
|
response = requests.get(url, stream=True)
|
|
with open(filepath, "wb") as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
if chunk:
|
|
f.write(chunk)
|
|
|
|
print("download successfully!")
|
|
|
|
return filepath
|
|
|
|
|
|
# check and download checkpoints if needed
|
|
SAM_checkpoint = "sam_vit_h_4b8939.pth"
|
|
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
|
xmem_checkpoint = "XMem-s012.pth"
|
|
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
|
|
folder ="./checkpoints"
|
|
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint)
|
|
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
|
|
|
|
# args, defined in track_anything.py
|
|
args = parse_augment()
|
|
args.port=12212
|
|
|
|
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
|
|
|
|
|
|
|
|
|
|
|
|
def pause_video(play_state):
|
|
print("user pause_video")
|
|
play_state.append(time.time())
|
|
return play_state
|
|
|
|
def play_video(play_state):
|
|
print("user play_video")
|
|
play_state.append(time.time())
|
|
return play_state
|
|
|
|
# convert points input to prompt state
|
|
def get_prompt(inputs, click_state):
|
|
points = []
|
|
labels = []
|
|
for input in inputs:
|
|
points.append(input[:2])
|
|
labels.append(input[2])
|
|
click_state[0] = points
|
|
prompt = {
|
|
"prompt_type":["click"],
|
|
"input_point":click_state[0],
|
|
"input_label":click_state[1],
|
|
"multimask_output":"True",
|
|
}
|
|
return prompt
|
|
|
|
|
|
def get_frames_from_video(video_input, play_state):
|
|
"""
|
|
Args:
|
|
video_path:str
|
|
timestamp:float64
|
|
Return
|
|
[[0:nearest_frame], [nearest_frame:], nearest_frame]
|
|
"""
|
|
video_path = video_input
|
|
timestamp = play_state[1] - play_state[0]
|
|
frames = []
|
|
try:
|
|
cap = cv2.VideoCapture(video_path)
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
while cap.isOpened():
|
|
ret, frame = cap.read()
|
|
if ret == True:
|
|
frames.append(frame)
|
|
else:
|
|
break
|
|
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
|
|
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
|
|
|
|
for frame in frames:
|
|
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
|
|
key_frame_index = int(timestamp * fps)
|
|
nearest_frame = frames[key_frame_index]
|
|
frames = [frames[:key_frame_index], frames[key_frame_index:], nearest_frame]
|
|
return frames, nearest_frame
|
|
|
|
def inference_all(template_frame, click_state, evt:gr.SelectData):
|
|
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
|
|
|
|
# default value
|
|
points = np.array([[evt.index[0],evt.index[1]]])
|
|
labels= np.array([1])
|
|
mask, logit, painted_image = model.inference_step(first_flag=True, interact_flag=False, image=np.asarray(template_frame), same_image_flag=False,points=points, labels=labels,logits=None,multimask=True)
|
|
return painted_image
|
|
|
|
|
|
with gr.Blocks() as iface:
|
|
"""
|
|
state for
|
|
"""
|
|
state = gr.State([])
|
|
play_state = gr.State([])
|
|
video_state = gr.State([[],[],[]])
|
|
click_state = gr.State([[],[]])
|
|
|
|
with gr.Row():
|
|
|
|
# for user video input
|
|
with gr.Column(scale=1.0):
|
|
video_input = gr.Video().style(height=720)
|
|
|
|
# listen to the user action for play and pause input video
|
|
video_input.play(fn=play_video, inputs=play_state, outputs=play_state)
|
|
video_input.pause(fn=pause_video, inputs=play_state, outputs=play_state)
|
|
|
|
|
|
with gr.Row(scale=1):
|
|
# put the template frame under the radio button
|
|
with gr.Column(scale=0.5):
|
|
# click points settins, negative or positive, mode continuous or single
|
|
with gr.Row():
|
|
with gr.Row(scale=0.5):
|
|
point_prompt = gr.Radio(
|
|
choices=["Positive", "Negative"],
|
|
value="Positive",
|
|
label="Point Prompt",
|
|
interactive=True)
|
|
click_mode = gr.Radio(
|
|
choices=["Continuous", "Single"],
|
|
value="Continuous",
|
|
label="Clicking Mode",
|
|
interactive=True)
|
|
with gr.Row(scale=0.5):
|
|
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160)
|
|
clear_button_image = gr.Button(value="Clear Image", interactive=True)
|
|
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
|
|
with gr.Column():
|
|
template_select_button = gr.Button(value="Template select", interactive=True, variant="primary")
|
|
|
|
|
|
|
|
with gr.Column(scale=0.5):
|
|
|
|
|
|
# for intermedia result check and correction
|
|
intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
|
|
|
|
# seg_automask_video_points_per_batch = gr.Slider(
|
|
# minimum=0,
|
|
# maximum=64,
|
|
# step=2,
|
|
# value=64,
|
|
# label="Points per Batch",
|
|
# )
|
|
|
|
seg_automask_video_predict = gr.Button(value="Generator")
|
|
|
|
|
|
# Display the first frame
|
|
# with gr.Column():
|
|
# first_frame = gr.Image(type="pil", interactive=True, elem_id="first_frame")
|
|
# seg_automask_firstframe = gr.Button(value="Find target")
|
|
|
|
# video_input = gr.inputs.Video(type="mp4")
|
|
|
|
# output = gr.outputs.Image(type="pil")
|
|
|
|
# gr.Interface(fn=capture_frame, inputs=seg_automask_video_file, outputs=first_frame)
|
|
|
|
# seg_automask_video_predict.click(
|
|
# fn=automask_video_app,
|
|
# inputs=[
|
|
# seg_automask_video_file,
|
|
# seg_automask_video_model_type,
|
|
# seg_automask_video_points_per_side,
|
|
# seg_automask_video_points_per_batch,
|
|
# seg_automask_video_min_area,
|
|
# ],
|
|
# outputs=[output_video],
|
|
# )
|
|
template_select_button.click(
|
|
fn=get_frames_from_video,
|
|
inputs=[
|
|
video_input,
|
|
play_state
|
|
],
|
|
outputs=[video_state, template_frame],
|
|
)
|
|
|
|
template_frame.select(
|
|
fn=inference_all,
|
|
inputs=[
|
|
template_frame
|
|
],
|
|
outputs=[
|
|
template_frame
|
|
]
|
|
|
|
)
|
|
|
|
# clear
|
|
# clear_button_clike.click(
|
|
# lambda x: ([[], [], []], x, ""),
|
|
# [origin_image],
|
|
# [click_state, image_input, wiki_output],
|
|
# queue=False,
|
|
# show_progress=False
|
|
# )
|
|
# clear_button_image.click(
|
|
# lambda: (None, [], [], [[], [], []], "", ""),
|
|
# [],
|
|
# [image_input, chatbot, state, click_state, wiki_output, origin_image],
|
|
# queue=False,
|
|
# show_progress=False
|
|
# )
|
|
video_input.clear(
|
|
lambda: (None, [], [], [[], [], []], None),
|
|
[],
|
|
[video_input, state, play_state, video_state, template_frame],
|
|
queue=False,
|
|
show_progress=False
|
|
)
|
|
|
|
iface.queue(concurrency_count=1)
|
|
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")
|
|
|
|
|
|
|