Files
Track-Anything/inference/interact/s2m/s2m_network.py
gaomingqi 9f30e59c45 add xmem
2023-04-12 08:24:08 +08:00

66 lines
2.4 KiB
Python

# Credit: https://github.com/VainF/DeepLabV3Plus-Pytorch
from .utils import IntermediateLayerGetter
from ._deeplab import DeepLabHead, DeepLabHeadV3Plus, DeepLabV3
from . import s2m_resnet
def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone):
if output_stride==8:
replace_stride_with_dilation=[False, True, True]
aspp_dilate = [12, 24, 36]
else:
replace_stride_with_dilation=[False, False, True]
aspp_dilate = [6, 12, 18]
backbone = s2m_resnet.__dict__[backbone_name](
pretrained=pretrained_backbone,
replace_stride_with_dilation=replace_stride_with_dilation)
inplanes = 2048
low_level_planes = 256
if name=='deeplabv3plus':
return_layers = {'layer4': 'out', 'layer1': 'low_level'}
classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate)
elif name=='deeplabv3':
return_layers = {'layer4': 'out'}
classifier = DeepLabHead(inplanes , num_classes, aspp_dilate)
backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
model = DeepLabV3(backbone, classifier)
return model
def _load_model(arch_type, backbone, num_classes, output_stride, pretrained_backbone):
if backbone.startswith('resnet'):
model = _segm_resnet(arch_type, backbone, num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone)
else:
raise NotImplementedError
return model
# Deeplab v3
def deeplabv3_resnet50(num_classes=1, output_stride=16, pretrained_backbone=False):
"""Constructs a DeepLabV3 model with a ResNet-50 backbone.
Args:
num_classes (int): number of classes.
output_stride (int): output stride for deeplab.
pretrained_backbone (bool): If True, use the pretrained backbone.
"""
return _load_model('deeplabv3', 'resnet50', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone)
# Deeplab v3+
def deeplabv3plus_resnet50(num_classes=1, output_stride=16, pretrained_backbone=False):
"""Constructs a DeepLabV3 model with a ResNet-50 backbone.
Args:
num_classes (int): number of classes.
output_stride (int): output stride for deeplab.
pretrained_backbone (bool): If True, use the pretrained backbone.
"""
return _load_model('deeplabv3plus', 'resnet50', num_classes, output_stride=output_stride, pretrained_backbone=pretrained_backbone)