Files
Track-Anything/inference/interact/fbrs/model/syncbn/modules/functional/syncbn.py
gaomingqi 9f30e59c45 add xmem
2023-04-12 08:24:08 +08:00

138 lines
5.2 KiB
Python

"""
/*****************************************************************************/
BatchNorm2dSync with multi-gpu
code referenced from : https://github.com/mapillary/inplace_abn
/*****************************************************************************/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.cuda.comm as comm
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from ._csrc import _backend
def _count_samples(x):
count = 1
for i, s in enumerate(x.size()):
if i != 1:
count *= s
return count
class BatchNorm2dSyncFunc(Function):
@staticmethod
def forward(ctx, x, weight, bias, running_mean, running_var,
extra, compute_stats=True, momentum=0.1, eps=1e-05):
def _parse_extra(ctx, extra):
ctx.is_master = extra["is_master"]
if ctx.is_master:
ctx.master_queue = extra["master_queue"]
ctx.worker_queues = extra["worker_queues"]
ctx.worker_ids = extra["worker_ids"]
else:
ctx.master_queue = extra["master_queue"]
ctx.worker_queue = extra["worker_queue"]
# Save context
if extra is not None:
_parse_extra(ctx, extra)
ctx.compute_stats = compute_stats
ctx.momentum = momentum
ctx.eps = eps
ctx.affine = weight is not None and bias is not None
if ctx.compute_stats:
N = _count_samples(x) * (ctx.master_queue.maxsize + 1)
assert N > 1
# 1. compute sum(x) and sum(x^2)
xsum, xsqsum = _backend.syncbn_sum_sqsum(x.detach())
if ctx.is_master:
xsums, xsqsums = [xsum], [xsqsum]
# master : gatther all sum(x) and sum(x^2) from slaves
for _ in range(ctx.master_queue.maxsize):
xsum_w, xsqsum_w = ctx.master_queue.get()
ctx.master_queue.task_done()
xsums.append(xsum_w)
xsqsums.append(xsqsum_w)
xsum = comm.reduce_add(xsums)
xsqsum = comm.reduce_add(xsqsums)
mean = xsum / N
sumvar = xsqsum - xsum * mean
var = sumvar / N
uvar = sumvar / (N - 1)
# master : broadcast global mean, variance to all slaves
tensors = comm.broadcast_coalesced(
(mean, uvar, var), [mean.get_device()] + ctx.worker_ids)
for ts, queue in zip(tensors[1:], ctx.worker_queues):
queue.put(ts)
else:
# slave : send sum(x) and sum(x^2) to master
ctx.master_queue.put((xsum, xsqsum))
# slave : get global mean and variance
mean, uvar, var = ctx.worker_queue.get()
ctx.worker_queue.task_done()
# Update running stats
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean)
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * uvar)
ctx.N = N
ctx.save_for_backward(x, weight, bias, mean, var)
else:
mean, var = running_mean, running_var
# do batch norm forward
z = _backend.syncbn_forward(x, weight, bias, mean, var,
ctx.affine, ctx.eps)
return z
@staticmethod
@once_differentiable
def backward(ctx, dz):
x, weight, bias, mean, var = ctx.saved_tensors
dz = dz.contiguous()
# 1. compute \sum(\frac{dJ}{dy_i}) and \sum(\frac{dJ}{dy_i}*\hat{x_i})
sum_dz, sum_dz_xhat = _backend.syncbn_backward_xhat(
dz, x, mean, var, ctx.eps)
if ctx.is_master:
sum_dzs, sum_dz_xhats = [sum_dz], [sum_dz_xhat]
# master : gatther from slaves
for _ in range(ctx.master_queue.maxsize):
sum_dz_w, sum_dz_xhat_w = ctx.master_queue.get()
ctx.master_queue.task_done()
sum_dzs.append(sum_dz_w)
sum_dz_xhats.append(sum_dz_xhat_w)
# master : compute global stats
sum_dz = comm.reduce_add(sum_dzs)
sum_dz_xhat = comm.reduce_add(sum_dz_xhats)
sum_dz /= ctx.N
sum_dz_xhat /= ctx.N
# master : broadcast global stats
tensors = comm.broadcast_coalesced(
(sum_dz, sum_dz_xhat), [mean.get_device()] + ctx.worker_ids)
for ts, queue in zip(tensors[1:], ctx.worker_queues):
queue.put(ts)
else:
# slave : send to master
ctx.master_queue.put((sum_dz, sum_dz_xhat))
# slave : get global stats
sum_dz, sum_dz_xhat = ctx.worker_queue.get()
ctx.worker_queue.task_done()
# do batch norm backward
dx, dweight, dbias = _backend.syncbn_backward(
dz, x, weight, bias, mean, var, sum_dz, sum_dz_xhat,
ctx.affine, ctx.eps)
return dx, dweight, dbias, \
None, None, None, None, None, None
batchnorm2d_sync = BatchNorm2dSyncFunc.apply
__all__ = ["batchnorm2d_sync"]