Files
Track-Anything/inference/interact/fbrs/model/modeling/resnet.py
gaomingqi 9f30e59c45 add xmem
2023-04-12 08:24:08 +08:00

40 lines
1.4 KiB
Python

import torch
from .resnetv1b import resnet34_v1b, resnet50_v1s, resnet101_v1s, resnet152_v1s
class ResNetBackbone(torch.nn.Module):
def __init__(self, backbone='resnet50', pretrained_base=True, dilated=True, **kwargs):
super(ResNetBackbone, self).__init__()
if backbone == 'resnet34':
pretrained = resnet34_v1b(pretrained=pretrained_base, dilated=dilated, **kwargs)
elif backbone == 'resnet50':
pretrained = resnet50_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
elif backbone == 'resnet101':
pretrained = resnet101_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
elif backbone == 'resnet152':
pretrained = resnet152_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
else:
raise RuntimeError(f'unknown backbone: {backbone}')
self.conv1 = pretrained.conv1
self.bn1 = pretrained.bn1
self.relu = pretrained.relu
self.maxpool = pretrained.maxpool
self.layer1 = pretrained.layer1
self.layer2 = pretrained.layer2
self.layer3 = pretrained.layer3
self.layer4 = pretrained.layer4
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
c1 = self.layer1(x)
c2 = self.layer2(c1)
c3 = self.layer3(c2)
c4 = self.layer4(c3)
return c1, c2, c3, c4