mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-16 08:27:49 +01:00
102 lines
3.4 KiB
Python
102 lines
3.4 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
from ..utils import misc
|
|
|
|
|
|
class TrainMetric(object):
|
|
def __init__(self, pred_outputs, gt_outputs):
|
|
self.pred_outputs = pred_outputs
|
|
self.gt_outputs = gt_outputs
|
|
|
|
def update(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
def get_epoch_value(self):
|
|
raise NotImplementedError
|
|
|
|
def reset_epoch_stats(self):
|
|
raise NotImplementedError
|
|
|
|
def log_states(self, sw, tag_prefix, global_step):
|
|
pass
|
|
|
|
@property
|
|
def name(self):
|
|
return type(self).__name__
|
|
|
|
|
|
class AdaptiveIoU(TrainMetric):
|
|
def __init__(self, init_thresh=0.4, thresh_step=0.025, thresh_beta=0.99, iou_beta=0.9,
|
|
ignore_label=-1, from_logits=True,
|
|
pred_output='instances', gt_output='instances'):
|
|
super().__init__(pred_outputs=(pred_output,), gt_outputs=(gt_output,))
|
|
self._ignore_label = ignore_label
|
|
self._from_logits = from_logits
|
|
self._iou_thresh = init_thresh
|
|
self._thresh_step = thresh_step
|
|
self._thresh_beta = thresh_beta
|
|
self._iou_beta = iou_beta
|
|
self._ema_iou = 0.0
|
|
self._epoch_iou_sum = 0.0
|
|
self._epoch_batch_count = 0
|
|
|
|
def update(self, pred, gt):
|
|
gt_mask = gt > 0
|
|
if self._from_logits:
|
|
pred = torch.sigmoid(pred)
|
|
|
|
gt_mask_area = torch.sum(gt_mask, dim=(1, 2)).detach().cpu().numpy()
|
|
if np.all(gt_mask_area == 0):
|
|
return
|
|
|
|
ignore_mask = gt == self._ignore_label
|
|
max_iou = _compute_iou(pred > self._iou_thresh, gt_mask, ignore_mask).mean()
|
|
best_thresh = self._iou_thresh
|
|
for t in [best_thresh - self._thresh_step, best_thresh + self._thresh_step]:
|
|
temp_iou = _compute_iou(pred > t, gt_mask, ignore_mask).mean()
|
|
if temp_iou > max_iou:
|
|
max_iou = temp_iou
|
|
best_thresh = t
|
|
|
|
self._iou_thresh = self._thresh_beta * self._iou_thresh + (1 - self._thresh_beta) * best_thresh
|
|
self._ema_iou = self._iou_beta * self._ema_iou + (1 - self._iou_beta) * max_iou
|
|
self._epoch_iou_sum += max_iou
|
|
self._epoch_batch_count += 1
|
|
|
|
def get_epoch_value(self):
|
|
if self._epoch_batch_count > 0:
|
|
return self._epoch_iou_sum / self._epoch_batch_count
|
|
else:
|
|
return 0.0
|
|
|
|
def reset_epoch_stats(self):
|
|
self._epoch_iou_sum = 0.0
|
|
self._epoch_batch_count = 0
|
|
|
|
def log_states(self, sw, tag_prefix, global_step):
|
|
sw.add_scalar(tag=tag_prefix + '_ema_iou', value=self._ema_iou, global_step=global_step)
|
|
sw.add_scalar(tag=tag_prefix + '_iou_thresh', value=self._iou_thresh, global_step=global_step)
|
|
|
|
@property
|
|
def iou_thresh(self):
|
|
return self._iou_thresh
|
|
|
|
|
|
def _compute_iou(pred_mask, gt_mask, ignore_mask=None, keep_ignore=False):
|
|
if ignore_mask is not None:
|
|
pred_mask = torch.where(ignore_mask, torch.zeros_like(pred_mask), pred_mask)
|
|
|
|
reduction_dims = misc.get_dims_with_exclusion(gt_mask.dim(), 0)
|
|
union = torch.mean((pred_mask | gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
|
|
intersection = torch.mean((pred_mask & gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
|
|
nonzero = union > 0
|
|
|
|
iou = intersection[nonzero] / union[nonzero]
|
|
if not keep_ignore:
|
|
return iou
|
|
else:
|
|
result = np.full_like(intersection, -1)
|
|
result[nonzero] = iou
|
|
return result
|