Files
Track-Anything/inference/interact/fbrs/controller.py
gaomingqi 9f30e59c45 add xmem
2023-04-12 08:24:08 +08:00

104 lines
3.2 KiB
Python

import torch
from ..fbrs.inference import clicker
from ..fbrs.inference.predictors import get_predictor
class InteractiveController:
def __init__(self, net, device, predictor_params, prob_thresh=0.5):
self.net = net.to(device)
self.prob_thresh = prob_thresh
self.clicker = clicker.Clicker()
self.states = []
self.probs_history = []
self.object_count = 0
self._result_mask = None
self.image = None
self.predictor = None
self.device = device
self.predictor_params = predictor_params
self.reset_predictor()
def set_image(self, image):
self.image = image
self._result_mask = torch.zeros(image.shape[-2:], dtype=torch.uint8)
self.object_count = 0
self.reset_last_object()
def add_click(self, x, y, is_positive):
self.states.append({
'clicker': self.clicker.get_state(),
'predictor': self.predictor.get_states()
})
click = clicker.Click(is_positive=is_positive, coords=(y, x))
self.clicker.add_click(click)
pred = self.predictor.get_prediction(self.clicker)
torch.cuda.empty_cache()
if self.probs_history:
self.probs_history.append((self.probs_history[-1][0], pred))
else:
self.probs_history.append((torch.zeros_like(pred), pred))
def undo_click(self):
if not self.states:
return
prev_state = self.states.pop()
self.clicker.set_state(prev_state['clicker'])
self.predictor.set_states(prev_state['predictor'])
self.probs_history.pop()
def partially_finish_object(self):
object_prob = self.current_object_prob
if object_prob is None:
return
self.probs_history.append((object_prob, torch.zeros_like(object_prob)))
self.states.append(self.states[-1])
self.clicker.reset_clicks()
self.reset_predictor()
def finish_object(self):
object_prob = self.current_object_prob
if object_prob is None:
return
self.object_count += 1
object_mask = object_prob > self.prob_thresh
self._result_mask[object_mask] = self.object_count
self.reset_last_object()
def reset_last_object(self):
self.states = []
self.probs_history = []
self.clicker.reset_clicks()
self.reset_predictor()
def reset_predictor(self, predictor_params=None):
if predictor_params is not None:
self.predictor_params = predictor_params
self.predictor = get_predictor(self.net, device=self.device,
**self.predictor_params)
if self.image is not None:
self.predictor.set_input_image(self.image)
@property
def current_object_prob(self):
if self.probs_history:
current_prob_total, current_prob_additive = self.probs_history[-1]
return torch.maximum(current_prob_total, current_prob_additive)
else:
return None
@property
def is_incomplete_mask(self):
return len(self.probs_history) > 0
@property
def result_mask(self):
return self._result_mask.clone()