mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-15 16:07:51 +01:00
385 lines
14 KiB
Python
385 lines
14 KiB
Python
import os
|
|
import glob
|
|
from PIL import Image
|
|
|
|
import torch
|
|
import yaml
|
|
import cv2
|
|
import importlib
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from inpainter.util.tensor_util import resize_frames, resize_masks
|
|
|
|
|
|
class BaseInpainter:
|
|
def __init__(self, E2FGVI_checkpoint, device) -> None:
|
|
"""
|
|
E2FGVI_checkpoint: checkpoint of inpainter (version hq, with multi-resolution support)
|
|
"""
|
|
net = importlib.import_module('inpainter.model.e2fgvi_hq')
|
|
self.model = net.InpaintGenerator().to(device)
|
|
self.model.load_state_dict(torch.load(E2FGVI_checkpoint, map_location=device))
|
|
self.model.eval()
|
|
self.device = device
|
|
# load configurations
|
|
with open("inpainter/config/config.yaml", 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
self.neighbor_stride = config['neighbor_stride']
|
|
self.num_ref = config['num_ref']
|
|
self.step = config['step']
|
|
# config for E2FGVI with splits
|
|
self.num_subset_frames = config['num_subset_frames']
|
|
self.num_external_ref = config['num_external_ref']
|
|
|
|
# sample reference frames from the whole video
|
|
def get_ref_index(self, f, neighbor_ids, length):
|
|
ref_index = []
|
|
if self.num_ref == -1:
|
|
for i in range(0, length, self.step):
|
|
if i not in neighbor_ids:
|
|
ref_index.append(i)
|
|
else:
|
|
start_idx = max(0, f - self.step * (self.num_ref // 2))
|
|
end_idx = min(length, f + self.step * (self.num_ref // 2))
|
|
for i in range(start_idx, end_idx + 1, self.step):
|
|
if i not in neighbor_ids:
|
|
if len(ref_index) > self.num_ref:
|
|
break
|
|
ref_index.append(i)
|
|
return ref_index
|
|
|
|
def inpaint_efficient(self, frames, masks, num_tcb, num_tca, dilate_radius=15, ratio=1):
|
|
"""
|
|
Perform Inpainting for video subsets
|
|
frames: numpy array, T, H, W, 3
|
|
masks: numpy array, T, H, W
|
|
num_tcb: constant, number of temporal context before, frames
|
|
num_tca: constant, number of temporal context after, frames
|
|
dilate_radius: radius when applying dilation on masks
|
|
ratio: down-sample ratio
|
|
|
|
Output:
|
|
inpainted_frames: numpy array, T, H, W, 3
|
|
"""
|
|
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
|
|
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
|
|
|
|
# --------------------
|
|
# pre-processing
|
|
# --------------------
|
|
masks = masks.copy()
|
|
masks = np.clip(masks, 0, 1)
|
|
kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
|
|
masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
|
|
T, H, W = masks.shape
|
|
masks = np.expand_dims(masks, axis=3) # expand to T, H, W, 1
|
|
# size: (w, h)
|
|
if ratio == 1:
|
|
size = None
|
|
binary_masks = masks
|
|
else:
|
|
size = [int(W*ratio), int(H*ratio)]
|
|
size = [si+1 if si%2>0 else si for si in size] # only consider even values
|
|
# shortest side should be larger than 50
|
|
if min(size) < 50:
|
|
ratio = 50. / min(H, W)
|
|
size = [int(W*ratio), int(H*ratio)]
|
|
binary_masks = resize_masks(masks, tuple(size))
|
|
frames = resize_frames(frames, tuple(size)) # T, H, W, 3
|
|
# frames and binary_masks are numpy arrays
|
|
h, w = frames.shape[1:3]
|
|
video_length = T - (num_tca + num_tcb) # real video length
|
|
# convert to tensor
|
|
imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
|
|
masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
|
|
imgs, masks = imgs.to(self.device), masks.to(self.device)
|
|
comp_frames = [None] * video_length
|
|
tcb_imgs = None
|
|
tca_imgs = None
|
|
tcb_masks = None
|
|
tca_masks = None
|
|
# --------------------
|
|
# end of pre-processing
|
|
# --------------------
|
|
|
|
# separate tc frames/masks from imgs and masks
|
|
if num_tcb > 0:
|
|
tcb_imgs = imgs[:, :num_tcb]
|
|
tcb_masks = masks[:, :num_tcb]
|
|
if num_tca > 0:
|
|
tca_imgs = imgs[:, -num_tca:]
|
|
tca_masks = masks[:, -num_tca:]
|
|
end_idx = -num_tca
|
|
else:
|
|
end_idx = T
|
|
|
|
imgs = imgs[:, num_tcb:end_idx]
|
|
masks = masks[:, num_tcb:end_idx]
|
|
binary_masks = binary_masks[num_tcb:end_idx] # only neighbor area are involved
|
|
frames = frames[num_tcb:end_idx] # only neighbor area are involved
|
|
|
|
for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
|
|
neighbor_ids = [
|
|
i for i in range(max(0, f - self.neighbor_stride),
|
|
min(video_length, f + self.neighbor_stride + 1))
|
|
]
|
|
ref_ids = self.get_ref_index(f, neighbor_ids, video_length)
|
|
|
|
# selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
|
|
# selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
|
|
|
|
selected_imgs = imgs[:, neighbor_ids]
|
|
selected_masks = masks[:, neighbor_ids]
|
|
# pad before
|
|
if tcb_imgs is not None:
|
|
selected_imgs = torch.concat([selected_imgs, tcb_imgs], dim=1)
|
|
selected_masks = torch.concat([selected_masks, tcb_masks], dim=1)
|
|
# integrate ref frames
|
|
selected_imgs = torch.concat([selected_imgs, imgs[:, ref_ids]], dim=1)
|
|
selected_masks = torch.concat([selected_masks, masks[:, ref_ids]], dim=1)
|
|
# pad after
|
|
if tca_imgs is not None:
|
|
selected_imgs = torch.concat([selected_imgs, tca_imgs], dim=1)
|
|
selected_masks = torch.concat([selected_masks, tca_masks], dim=1)
|
|
|
|
with torch.no_grad():
|
|
masked_imgs = selected_imgs * (1 - selected_masks)
|
|
mod_size_h = 60
|
|
mod_size_w = 108
|
|
h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
|
|
w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [3])],
|
|
3)[:, :, :, :h + h_pad, :]
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [4])],
|
|
4)[:, :, :, :, :w + w_pad]
|
|
pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
|
|
pred_imgs = pred_imgs[:, :, :h, :w]
|
|
pred_imgs = (pred_imgs + 1) / 2
|
|
pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
|
|
for i in range(len(neighbor_ids)):
|
|
idx = neighbor_ids[i]
|
|
img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
|
|
1 - binary_masks[idx])
|
|
if comp_frames[idx] is None:
|
|
comp_frames[idx] = img
|
|
else:
|
|
comp_frames[idx] = comp_frames[idx].astype(
|
|
np.float32) * 0.5 + img.astype(np.float32) * 0.5
|
|
torch.cuda.empty_cache()
|
|
inpainted_frames = np.stack(comp_frames, 0)
|
|
return inpainted_frames.astype(np.uint8)
|
|
|
|
def inpaint(self, frames, masks, dilate_radius=15, ratio=1):
|
|
"""
|
|
Perform Inpainting for video subsets
|
|
frames: numpy array, T, H, W, 3
|
|
masks: numpy array, T, H, W
|
|
dilate_radius: radius when applying dilation on masks
|
|
ratio: down-sample ratio
|
|
|
|
Output:
|
|
inpainted_frames: numpy array, T, H, W, 3
|
|
"""
|
|
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
|
|
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
|
|
|
|
# set num_subset_frames
|
|
num_subset_frames = self.num_subset_frames
|
|
# split frames into subsets
|
|
video_length = len(frames)
|
|
num_splits = video_length // num_subset_frames
|
|
id_splits = [[i*num_subset_frames, (i+1)*num_subset_frames] for i in range(num_splits)] # id splits
|
|
|
|
if num_splits == 0:
|
|
id_splits = [[0, video_length]]
|
|
|
|
# if remaining split > num_subset_frames/2, add a new split, else, append to the last split
|
|
if video_length - id_splits[-1][-1] > num_subset_frames / 3:
|
|
id_splits.append([num_splits*num_subset_frames, video_length])
|
|
else:
|
|
diff = video_length - id_splits[-1][-1]
|
|
id_splits = [[ids[0]+diff, ids[1]+diff] for ids in id_splits]
|
|
id_splits[0][0] = 0 # if OOM, let it happen at the begining :D
|
|
|
|
# if appending, convert the appended split to the FIRST one, avoiding OOM at last
|
|
|
|
# perform inpainting for each split
|
|
inpainted_splits = []
|
|
for id_split in id_splits:
|
|
video_split = frames[id_split[0]:id_split[1]]
|
|
mask_split = masks[id_split[0]:id_split[1]]
|
|
|
|
# | id_before | ----- | id_split[0] | ----- | id_split[1] | ----- | id_after |
|
|
# for each split, consider its temporal context [-context_range] frames and [context_range] frames
|
|
id_before = max(0, id_split[0] - self.step * self.num_external_ref)
|
|
try:
|
|
tcb_frames = np.stack([frames[idb] for idb in range(id_before, (id_split[0]-self.step) + 1, self.step)], 0)
|
|
tcb_masks = np.stack([masks[idb] for idb in range(id_before, (id_split[0]-self.step) + 1, self.step)], 0)
|
|
num_tcb = len(tcb_frames)
|
|
except:
|
|
num_tcb = 0
|
|
id_after = min(video_length, id_split[1] + self.step * self.num_external_ref + 1)
|
|
try:
|
|
tca_frames = np.stack([frames[ida] for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
|
|
tca_masks = np.stack([masks[ida] for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
|
|
num_tca = len(tca_frames)
|
|
except:
|
|
num_tca = 0
|
|
|
|
# concatenate temporal context frames/masks with input frames/masks (for parallel pre-processing)
|
|
if num_tcb > 0:
|
|
video_split = np.concatenate([tcb_frames, video_split], 0)
|
|
mask_split = np.concatenate([tcb_masks, mask_split], 0)
|
|
if num_tca > 0:
|
|
video_split = np.concatenate([video_split, tca_frames], 0)
|
|
mask_split = np.concatenate([mask_split, tca_masks], 0)
|
|
|
|
torch.cuda.empty_cache()
|
|
# inpaint each split
|
|
inpainted_splits.append(self.inpaint_efficient(video_split, mask_split, num_tcb, num_tca, dilate_radius, ratio))
|
|
torch.cuda.empty_cache()
|
|
inpainted_frames = np.concatenate(inpainted_splits, 0)
|
|
|
|
return inpainted_frames.astype(np.uint8)
|
|
|
|
def inpaint_ori(self, frames, masks, dilate_radius=15, ratio=1):
|
|
"""
|
|
frames: numpy array, T, H, W, 3
|
|
masks: numpy array, T, H, W
|
|
dilate_radius: radius when applying dilation on masks
|
|
ratio: down-sample ratio
|
|
|
|
Output:
|
|
inpainted_frames: numpy array, T, H, W, 3
|
|
"""
|
|
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
|
|
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
|
|
masks = masks.copy()
|
|
masks = np.clip(masks, 0, 1)
|
|
kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
|
|
masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
|
|
|
|
T, H, W = masks.shape
|
|
masks = np.expand_dims(masks, axis=3) # expand to T, H, W, 1
|
|
# size: (w, h)
|
|
if ratio == 1:
|
|
size = None
|
|
binary_masks = masks
|
|
else:
|
|
size = [int(W*ratio), int(H*ratio)]
|
|
size = [si+1 if si%2>0 else si for si in size] # only consider even values
|
|
# shortest side should be larger than 50
|
|
if min(size) < 50:
|
|
ratio = 50. / min(H, W)
|
|
size = [int(W*ratio), int(H*ratio)]
|
|
|
|
size = [160, 120]
|
|
binary_masks = resize_masks(masks, tuple(size))
|
|
frames = resize_frames(frames, tuple(size)) # T, H, W, 3
|
|
# frames and binary_masks are numpy arrays
|
|
h, w = frames.shape[1:3]
|
|
video_length = T
|
|
|
|
# convert to tensor
|
|
imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
|
|
masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
|
|
|
|
imgs, masks = imgs.to(self.device), masks.to(self.device)
|
|
comp_frames = [None] * video_length
|
|
|
|
for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
|
|
neighbor_ids = [
|
|
i for i in range(max(0, f - self.neighbor_stride),
|
|
min(video_length, f + self.neighbor_stride + 1))
|
|
]
|
|
ref_ids = self.get_ref_index(f, neighbor_ids, video_length)
|
|
selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
|
|
selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
|
|
with torch.no_grad():
|
|
masked_imgs = selected_imgs * (1 - selected_masks)
|
|
mod_size_h = 60
|
|
mod_size_w = 108
|
|
h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
|
|
w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [3])],
|
|
3)[:, :, :, :h + h_pad, :]
|
|
masked_imgs = torch.cat(
|
|
[masked_imgs, torch.flip(masked_imgs, [4])],
|
|
4)[:, :, :, :, :w + w_pad]
|
|
pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
|
|
pred_imgs = pred_imgs[:, :, :h, :w]
|
|
pred_imgs = (pred_imgs + 1) / 2
|
|
pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
|
|
for i in range(len(neighbor_ids)):
|
|
idx = neighbor_ids[i]
|
|
img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
|
|
1 - binary_masks[idx])
|
|
if comp_frames[idx] is None:
|
|
comp_frames[idx] = img
|
|
else:
|
|
comp_frames[idx] = comp_frames[idx].astype(
|
|
np.float32) * 0.5 + img.astype(np.float32) * 0.5
|
|
torch.cuda.empty_cache()
|
|
inpainted_frames = np.stack(comp_frames, 0)
|
|
return inpainted_frames.astype(np.uint8)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# # davis-2017
|
|
# frame_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/parkour', '*.jpg'))
|
|
# frame_path.sort()
|
|
# mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/Annotations/480p/parkour', "*.png"))
|
|
# mask_path.sort()
|
|
|
|
# long and large video
|
|
mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/test-sample13', '*.npy'))
|
|
mask_path.sort()
|
|
frames = np.load('/ssd1/gaomingqi/revenger.npy')
|
|
save_path = '/ssd1/gaomingqi/results/inpainting/avengers_split'
|
|
|
|
if not os.path.exists(save_path):
|
|
os.mkdir(save_path)
|
|
|
|
masks = []
|
|
for ti, mid in enumerate(mask_path):
|
|
masks.append(np.load(mid, allow_pickle=True))
|
|
if ti > 1122:
|
|
break
|
|
|
|
masks = np.stack(masks[:len(frames)], 0)
|
|
|
|
# ----------------------------------------------
|
|
# how to use
|
|
# ----------------------------------------------
|
|
# 1/3: set checkpoint and device
|
|
checkpoint = '/ssd1/gaomingqi/checkpoints/E2FGVI-HQ-CVPR22.pth'
|
|
device = 'cuda:4'
|
|
# 2/3: initialise inpainter
|
|
base_inpainter = BaseInpainter(checkpoint, device)
|
|
# 3/3: inpainting (frames: numpy array, T, H, W, 3; masks: numpy array, T, H, W)
|
|
# ratio: (0, 1], ratio for down sample, default value is 1
|
|
inpainted_frames = base_inpainter.inpaint(frames[:300], masks[:300], ratio=0.6) # numpy array, T, H, W, 3
|
|
|
|
# save
|
|
for ti, inpainted_frame in enumerate(inpainted_frames):
|
|
frame = Image.fromarray(inpainted_frame).convert('RGB')
|
|
frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))
|
|
|
|
torch.cuda.empty_cache()
|
|
print('switch to ori')
|
|
|
|
# inpainted_frames = base_inpainter.inpaint_ori(frames[:50], masks[:50], ratio=0.1)
|
|
# save_path = '/ssd1/gaomingqi/results/inpainting/avengers'
|
|
# # ----------------------------------------------
|
|
# # end
|
|
# # ----------------------------------------------
|
|
# # save
|
|
# for ti, inpainted_frame in enumerate(inpainted_frames):
|
|
# frame = Image.fromarray(inpainted_frame).convert('RGB')
|
|
# frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))
|