Files
Track-Anything/app.py
2023-04-13 19:04:57 +00:00

154 lines
4.8 KiB
Python

import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import cv2
import time
from PIL import Image
import numpy as np
from tools.interact_tools import initialize
initialize()
def pause_video(play_state):
print("user pause_video")
play_state.append(time.time())
return play_state
def play_video(play_state):
print("user play_video")
play_state.append(time.time())
return play_state
def get_frames_from_video(video_input, play_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame-1], [nearest_frame+1], nearest_frame]
"""
video_path = video_input
timestamp = play_state[1] - play_state[0]
frames = []
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
frames.append(frame)
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
for frame in frames:
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
key_frame_index = int(timestamp * fps)
nearest_frame = frames[key_frame_index]
frames = [frames[:key_frame_index], frames[key_frame_index:], nearest_frame]
return frames, nearest_frame
with gr.Blocks() as iface:
state = gr.State([])
play_state = gr.State([])
video_state = gr.State([[],[],[]])
with gr.Row():
with gr.Column(scale=1.0):
video_input = gr.Video().style(height=720)
# listen to the user action for play and pause input video
video_input.play(fn=play_video, inputs=play_state, outputs=play_state)
video_input.pause(fn=pause_video, inputs=play_state, outputs=play_state)
with gr.Row():
with gr.Row():
with gr.Column(scale=0.5):
template_frame = gr.Image(type="pil", interactive=True, elem_id="template_frame")
with gr.Column():
template_select_button = gr.Button(value="Template select", interactive=True, variant="primary")
with gr.Column(scale=0.5):
with gr.Row(scale=0.4):
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True)
clear_button_image = gr.Button(value="Clear Image", interactive=True)
# seg_automask_video_points_per_batch = gr.Slider(
# minimum=0,
# maximum=64,
# step=2,
# value=64,
# label="Points per Batch",
# )
seg_automask_video_predict = gr.Button(value="Generator")
# Display the first frame
# with gr.Column():
# first_frame = gr.Image(type="pil", interactive=True, elem_id="first_frame")
# seg_automask_firstframe = gr.Button(value="Find target")
# video_input = gr.inputs.Video(type="mp4")
# output = gr.outputs.Image(type="pil")
# gr.Interface(fn=capture_frame, inputs=seg_automask_video_file, outputs=first_frame)
# seg_automask_video_predict.click(
# fn=automask_video_app,
# inputs=[
# seg_automask_video_file,
# seg_automask_video_model_type,
# seg_automask_video_points_per_side,
# seg_automask_video_points_per_batch,
# seg_automask_video_min_area,
# ],
# outputs=[output_video],
# )
template_select_button.click(
fn=get_frames_from_video,
inputs=[
video_input,
play_state
],
outputs=[video_state, template_frame],
)
# clear
# clear_button_clike.click(
# lambda x: ([[], [], []], x, ""),
# [origin_image],
# [click_state, image_input, wiki_output],
# queue=False,
# show_progress=False
# )
# clear_button_image.click(
# lambda: (None, [], [], [[], [], []], "", ""),
# [],
# [image_input, chatbot, state, click_state, wiki_output, origin_image],
# queue=False,
# show_progress=False
# )
video_input.clear(
lambda: (None, [], [], [[], [], []], None),
[],
[video_input, state, play_state, video_state, template_frame],
queue=False,
show_progress=False
)
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=12212, server_name="0.0.0.0")