Files
Track-Anything/tracker/base_tracker.py
2023-04-14 05:38:02 +08:00

117 lines
4.0 KiB
Python

# input: frame list, first frame mask
# output: segmentation results on all frames
import os
import glob
import numpy as np
from PIL import Image
import torch
import yaml
from model.network import XMem
from inference.inference_core import InferenceCore
from inference.data.mask_mapper import MaskMapper
# for data transormation
from torchvision import transforms
from dataset.range_transform import im_normalization
import torch.nn.functional as F
import sys
sys.path.insert(0, sys.path[0]+"/../")
from tools.painter import mask_painter
class BaseTracker:
def __init__(self, device, xmem_checkpoint) -> None:
"""
device: model device
xmem_checkpoint: checkpoint of XMem model
"""
# load configurations
with open("tracker/config/config.yaml", 'r') as stream:
config = yaml.safe_load(stream)
# initialise XMem
network = XMem(config, xmem_checkpoint).to(device).eval()
# initialise IncerenceCore
self.tracker = InferenceCore(network, config)
# data transformation
self.im_transform = transforms.Compose([
transforms.ToTensor(),
im_normalization,
])
self.device = device
def resize_mask(self, mask):
# mask transform is applied AFTER mapper, so we need to post-process it in eval.py
h, w = mask.shape[-2:]
min_hw = min(h, w)
return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)),
mode='nearest')
def track(self, frames, first_frame_annotation):
"""
Input:
frames: numpy arrays: T, H, W, 3 (T: number of frames)
first_frame_annotation: numpy array: H, W
Output:
masks: numpy arrays: H, W
"""
shape = np.array(frames).shape[1:3] # H, W
frame_list = [self.im_transform(frame).to(self.device) for frame in frames]
frame_tensors = torch.stack(frame_list, dim=0)
# data transformation
mapper = MaskMapper()
vid_length = len(frame_tensors)
for ti, frame_tensor in enumerate(frame_tensors):
if ti == 0:
mask, labels = mapper.convert_mask(first_frame_annotation)
mask = torch.Tensor(mask).to(self.device)
self.tracker.set_all_labels(list(mapper.remappings.values()))
else:
mask = None
labels = None
# track one frame
prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1))
out_mask = torch.argmax(prob, dim=0)
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)
painted_image = mask_painter(frames[ti], out_mask)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti}.png')
if __name__ == '__main__':
# video frames
video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/dance-twirl', '*.jpg'))
video_path_list.sort()
# first frame
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
# load frames
<<<<<<< HEAD
frames = []
=======
frames = ["test_confict"]
>>>>>>> 5ca44baea36b7c66043342afc9ffb966e6d24417
for video_path in video_path_list:
frames.append(np.array(Image.open(video_path).convert('RGB')))
frames = np.stack(frames, 0) # N, H, W, C
# load first frame annotation
first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C
# ----------------------------------------------------------
# initalise tracker
# ----------------------------------------------------------
device = 'cuda:0'
XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
tracker = BaseTracker('cuda:0', XMEM_checkpoint)
# track anything given in the first frame annotation
tracker.track(frames, first_frame_annotation)