Files
Track-Anything/app.py
2023-04-15 19:59:58 +00:00

343 lines
12 KiB
Python

import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import cv2
import time
from PIL import Image
import numpy as np
import os
import sys
sys.path.append(sys.path[0]+"/tracker")
sys.path.append(sys.path[0]+"/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
import requests
import json
import torchvision
import torch
import concurrent.futures
import queue
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("download checkpoints ......")
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("download successfully!")
return filepath
def pause_video(play_state):
print("user pause_video")
play_state.append(time.time())
return play_state
def play_video(play_state):
print("user play_video")
play_state.append(time.time())
return play_state
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
def get_frames_from_video(video_input, play_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
timestamp = play_state[1] - play_state[0]
frames = []
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
frames.append(frame)
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
for index, frame in enumerate(frames):
frames[index] = np.asarray(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
key_frame_index = int(timestamp * fps)
nearest_frame = frames[key_frame_index]
frames_split = [frames[:key_frame_index], frames[key_frame_index:], nearest_frame]
# output_path='./seperate.mp4'
# torchvision.io.write_video(output_path, frames[1], fps=fps, video_codec="libx264")
# set image in sam when select the template frame
model.samcontroler.sam_controler.set_image(nearest_frame)
return frames_split, nearest_frame, nearest_frame
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
# height, width, layers = frames[0].shape
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# for frame in frames:
# video.write(frame)
# video.release()
frames = torch.from_numpy(np.asarray(frames))
output_path='./output.mp4'
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
# default value
# points = np.array([[evt.index[0],evt.index[1]]])
# labels= np.array([1])
if len(logit)==0:
logit = None
mask, logit, painted_image = model.first_frame_click(
image=origin_frame,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
yield painted_image, click_state, logit, mask
def vos_tracking_video(video_state, template_mask):
masks, logits, painted_images = model.generator(images=video_state[1], mask=template_mask)
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4")
return video_output
def vos_tracking_image(video_state, template_mask, result_queue, done_queue):
images = video_state[1]
images = images[:5]
for i in range(len(images)):
if i ==0:
mask, logit, painted_image = model.xmem.track(images[i], template_mask)
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
else:
mask, logit, painted_image = model.xmem.track(images[i])
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
done_queue.put(False)
time.sleep(1)
done_queue.put(True)
def update_gradio_image(result_queue, done_queue):
print("update_gradio_image")
while True:
if not done_queue.empty():
if done_queue.get():
break
if not result_queue.empty():
image = result_queue['images'].get()
mask = result_queue['masks'].get()
logit = result_queue['logits'].get()
painted_image = result_queue['painted'].get()
yield painted_image
def parallel_tracking(video_state, template_mask):
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
executor.submit(vos_tracking_image, video_state, template_mask, result_queue, done_queue)
executor.submit(update_gradio_image, result_queue, done_queue)
# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth"
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
folder ="./checkpoints"
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
# args, defined in track_anything.py
args = parse_augment()
args.port = 12214
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
result_queue = {"images": queue.Queue(),
"masks": queue.Queue(),
"logits": queue.Queue(),
"painted": queue.Queue()}
done_queue = queue.Queue()
with gr.Blocks() as iface:
"""
state for
"""
state = gr.State([])
play_state = gr.State([])
video_state = gr.State([[],[],[]])
click_state = gr.State([[],[]])
logits = gr.State([])
origin_image = gr.State(None)
template_mask = gr.State(None)
# queue value for image refresh, origin image, mask, logits, painted image
with gr.Row():
# for user video input
with gr.Column(scale=1.0):
video_input = gr.Video().style(height=720)
# listen to the user action for play and pause input video
video_input.play(fn=play_video, inputs=play_state, outputs=play_state, scroll_to_output=True, show_progress=True)
video_input.pause(fn=pause_video, inputs=play_state, outputs=play_state)
with gr.Row(scale=1):
# put the template frame under the radio button
with gr.Column(scale=0.5):
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row(scale=0.5):
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True)
click_mode = gr.Radio(
choices=["Continuous", "Single"],
value="Continuous",
label="Clicking Mode",
interactive=True)
with gr.Row(scale=0.5):
clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160)
clear_button_image = gr.Button(value="Clear Image", interactive=True)
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
with gr.Column():
template_select_button = gr.Button(value="Template select", interactive=True, variant="primary")
with gr.Column(scale=0.5):
# for intermedia result check and correction
# intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
video_output = gr.Video().style(height=360)
tracking_video_predict_button = gr.Button(value="Video")
image_output = gr.Image(type="pil", interactive=True, elem_id="image_output").style(height=360)
tracking_image_predict_button = gr.Button(value="Tracking")
template_frame.select(
fn=sam_refine,
inputs=[
origin_image, point_prompt, click_state, logits
],
outputs=[
template_frame, click_state, logits, template_mask
]
)
template_select_button.click(
fn=get_frames_from_video,
inputs=[
video_input,
play_state
],
outputs=[video_state, template_frame, origin_image],
)
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, template_mask],
outputs=[video_output]
)
tracking_image_predict_button.click(
fn=parallel_tracking,
inputs=[video_state, template_mask],
outputs=[image_output]
)
# clear
# clear_button_clike.click(
# lambda x: ([[], [], []], x, ""),
# [origin_image],
# [click_state, image_input, wiki_output],
# queue=False,
# show_progress=False
# )
# clear_button_image.click(
# lambda: (None, [], [], [[], [], []], "", ""),
# [],
# [image_input, chatbot, state, click_state, wiki_output, origin_image],
# queue=False,
# show_progress=False
# )
video_input.clear(
lambda: (None, [], [], [[], [], []], None),
[],
[video_input, state, play_state, video_state, template_frame],
queue=False,
show_progress=False
)
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")