mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-16 08:27:49 +01:00
add base_tracker
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -5,3 +5,4 @@ docs/
|
|||||||
*.mp4
|
*.mp4
|
||||||
debug_images/
|
debug_images/
|
||||||
*.png
|
*.png
|
||||||
|
*.jpg
|
||||||
|
|||||||
@@ -13,3 +13,4 @@ matplotlib
|
|||||||
onnxruntime
|
onnxruntime
|
||||||
onnx
|
onnx
|
||||||
metaseg
|
metaseg
|
||||||
|
pyyaml
|
||||||
|
|||||||
59
tracker/base_tracker.py
Normal file
59
tracker/base_tracker.py
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
# input: frame list, first frame mask
|
||||||
|
# output: segmentation results on all frames
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from model.network import XMem
|
||||||
|
from inference.inference_core import InferenceCore
|
||||||
|
|
||||||
|
|
||||||
|
class BaseTracker:
|
||||||
|
def __init__(self, device, xmem_checkpoint) -> None:
|
||||||
|
"""
|
||||||
|
device: model device
|
||||||
|
xmem_checkpoint: checkpoint of XMem model
|
||||||
|
"""
|
||||||
|
# load configurations
|
||||||
|
with open("tracker/config/config.yaml", 'r') as stream:
|
||||||
|
config = yaml.safe_load(stream)
|
||||||
|
# initialise XMem
|
||||||
|
network = XMem(config, xmem_checkpoint).to(device).eval()
|
||||||
|
# initialise IncerenceCore
|
||||||
|
self.tracker = InferenceCore(network, config)
|
||||||
|
# set data transformation
|
||||||
|
# self.data_transform =
|
||||||
|
|
||||||
|
def track(self, frames, first_frame_annotation):
|
||||||
|
# data transformation
|
||||||
|
|
||||||
|
# tracking
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# video frames
|
||||||
|
video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/dance-twirl', '*.jpg'))
|
||||||
|
video_path_list.sort()
|
||||||
|
# first frame
|
||||||
|
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
|
||||||
|
|
||||||
|
# load frames
|
||||||
|
frames = []
|
||||||
|
for video_path in video_path_list:
|
||||||
|
frames.append(np.array(Image.open(video_path).convert('RGB')))
|
||||||
|
frames = np.stack(frames, 0) # N, H, W, C
|
||||||
|
|
||||||
|
# load first frame annotation
|
||||||
|
first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C
|
||||||
|
|
||||||
|
# initalise tracker
|
||||||
|
device = 'cuda:0'
|
||||||
|
XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
|
||||||
|
tracker = BaseTracker('cuda:0', XMEM_checkpoint)
|
||||||
|
|
||||||
|
# track anything given in the first frame annotation
|
||||||
|
tracker.track(frames, first_frame_annotation)
|
||||||
15
tracker/config/config.yaml
Normal file
15
tracker/config/config.yaml
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
# config info for XMem
|
||||||
|
benchmark: False
|
||||||
|
disable_long_term: False
|
||||||
|
max_mid_term_frames: 10
|
||||||
|
min_mid_term_frames: 5
|
||||||
|
max_long_term_elements: 10000
|
||||||
|
num_prototypes: 128
|
||||||
|
top_k: 30
|
||||||
|
mem_every: 5
|
||||||
|
deep_update_every: -1
|
||||||
|
save_scores: False
|
||||||
|
flip: False
|
||||||
|
size: 480
|
||||||
|
enable_long_term: True
|
||||||
|
enable_long_term_count_usage: True
|
||||||
@@ -1,29 +0,0 @@
|
|||||||
# input: frame list, first frame mask
|
|
||||||
# output: segmentation results on all frames
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
|
|
||||||
class XMem:
|
|
||||||
# based on https://github.com/hkchengrex/XMem
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# video frames
|
|
||||||
video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/dance-twirl', '*.jpg'))
|
|
||||||
video_path_list.sort()
|
|
||||||
# first frame
|
|
||||||
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
|
|
||||||
|
|
||||||
# load frames
|
|
||||||
frames = []
|
|
||||||
for video_path in video_path_list:
|
|
||||||
frames.append(np.array(Image.open(video_path).convert('RGB')))
|
|
||||||
frames = np.stack(frames, 0) # N, H, W, C
|
|
||||||
|
|
||||||
# load first frame annotation
|
|
||||||
first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user