segment videos via base_tracker

This commit is contained in:
gaomingqi
2023-04-14 10:17:41 +08:00
parent 567e08cf18
commit c8ca9078ec

View File

@@ -39,8 +39,10 @@ class BaseTracker:
transforms.ToTensor(),
im_normalization,
])
self.mapper = MaskMapper()
self.device = device
@torch.no_grad()
def resize_mask(self, mask):
# mask transform is applied AFTER mapper, so we need to post-process it in eval.py
h, w = mask.shape[-2:]
@@ -48,6 +50,7 @@ class BaseTracker:
return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)),
mode='nearest')
@torch.no_grad()
def track(self, frames, first_frame_annotation):
"""
Input:
@@ -57,34 +60,28 @@ class BaseTracker:
Output:
masks: numpy arrays: H, W
"""
shape = np.array(frames).shape[1:3] # H, W
frame_list = [self.im_transform(frame).to(self.device) for frame in frames]
frame_tensors = torch.stack(frame_list, dim=0)
vid_length = len(frames)
masks = []
# data transformation
mapper = MaskMapper()
vid_length = len(frame_tensors)
for ti, frame_tensor in enumerate(frame_tensors):
for ti, frame in enumerate(frames):
# convert to tensor
frame_tensor = self.im_transform(frame).to(self.device)
if ti == 0:
mask, labels = mapper.convert_mask(first_frame_annotation)
mask, labels = self.mapper.convert_mask(first_frame_annotation)
mask = torch.Tensor(mask).to(self.device)
self.tracker.set_all_labels(list(mapper.remappings.values()))
self.tracker.set_all_labels(list(self.mapper.remappings.values()))
else:
mask = None
labels = None
# track one frame
prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1))
# convert to mask
out_mask = torch.argmax(prob, dim=0)
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)
masks.append(out_mask)
painted_image = mask_painter(frames[ti], out_mask)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti}.png')
return np.stack(masks, 0)
if __name__ == '__main__':
@@ -94,11 +91,7 @@ if __name__ == '__main__':
# first frame
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
# load frames
<<<<<<< HEAD
frames = []
=======
frames = ["test_confict"]
>>>>>>> 5ca44baea36b7c66043342afc9ffb966e6d24417
for video_path in video_path_list:
frames.append(np.array(Image.open(video_path).convert('RGB')))
frames = np.stack(frames, 0) # N, H, W, C
@@ -108,9 +101,16 @@ if __name__ == '__main__':
# ----------------------------------------------------------
# initalise tracker
# ----------------------------------------------------------
device = 'cuda:0'
device = 'cuda:1'
XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
tracker = BaseTracker('cuda:0', XMEM_checkpoint)
tracker = BaseTracker(device, XMEM_checkpoint)
# track anything given in the first frame annotation
tracker.track(frames, first_frame_annotation)
masks = tracker.track(frames, first_frame_annotation)
# save
for ti, (frame, mask) in enumerate(zip(frames, masks)):
painted_image = mask_painter(frame, mask)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti:05d}.png')