update base_tracker

This commit is contained in:
gaomingqi
2023-04-14 05:37:08 +08:00
parent 0a6b4140f8
commit c11c310361

View File

@@ -9,9 +9,16 @@ import torch
import yaml import yaml
from model.network import XMem from model.network import XMem
from inference.inference_core import InferenceCore from inference.inference_core import InferenceCore
from inference.data.mask_mapper import MaskMapper
# for data transormation # for data transormation
from torchvision import transforms from torchvision import transforms
from dataset.range_transform import im_normalization from dataset.range_transform import im_normalization
import torch.nn.functional as F
import sys
sys.path.insert(0, sys.path[0]+"/../")
from tools.painter import mask_painter
class BaseTracker: class BaseTracker:
@@ -32,6 +39,14 @@ class BaseTracker:
transforms.ToTensor(), transforms.ToTensor(),
im_normalization, im_normalization,
]) ])
self.device = device
def resize_mask(self, mask):
# mask transform is applied AFTER mapper, so we need to post-process it in eval.py
h, w = mask.shape[-2:]
min_hw = min(h, w)
return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)),
mode='nearest')
def track(self, frames, first_frame_annotation): def track(self, frames, first_frame_annotation):
""" """
@@ -40,14 +55,36 @@ class BaseTracker:
first_frame_annotation: numpy array: H, W first_frame_annotation: numpy array: H, W
Output: Output:
masks: numpy arrays: T, H, W masks: numpy arrays: H, W
""" """
# data transformation shape = np.array(frames).shape[1:3] # H, W
for frame in frames: frame_list = [self.im_transform(frame).to(self.device) for frame in frames]
frame = self.im_transform(frame) frame_tensors = torch.stack(frame_list, dim=0)
# tracking
# data transformation
mapper = MaskMapper()
vid_length = len(frame_tensors)
for ti, frame_tensor in enumerate(frame_tensors):
if ti == 0:
mask, labels = mapper.convert_mask(first_frame_annotation)
mask = torch.Tensor(mask).to(self.device)
self.tracker.set_all_labels(list(mapper.remappings.values()))
else:
mask = None
labels = None
# track one frame
prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1))
out_mask = torch.argmax(prob, dim=0)
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)
painted_image = mask_painter(frames[ti], out_mask)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti}.png')
if __name__ == '__main__': if __name__ == '__main__':
@@ -56,20 +93,17 @@ if __name__ == '__main__':
video_path_list.sort() video_path_list.sort()
# first frame # first frame
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png' first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
# load frames # load frames
<<<<<<< HEAD frames = []
=======
frames = ["test_confict"]
>>>>>>> a5606340a199569856ffa1585aeeff5a40cc34ba
for video_path in video_path_list: for video_path in video_path_list:
frames.append(np.array(Image.open(video_path).convert('RGB'))) frames.append(np.array(Image.open(video_path).convert('RGB')))
frames = np.stack(frames, 0) # N, H, W, C frames = np.stack(frames, 0) # N, H, W, C
# load first frame annotation # load first frame annotation
first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C
# ----------------------------------------------------------
# initalise tracker # initalise tracker
# ----------------------------------------------------------
device = 'cuda:0' device = 'cuda:0'
XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth' XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
tracker = BaseTracker('cuda:0', XMEM_checkpoint) tracker = BaseTracker('cuda:0', XMEM_checkpoint)