interactive mode first version -- li

This commit is contained in:
memoryunreal
2023-04-16 08:53:28 +00:00
parent 42f92854f5
commit 98f0bb7c25

157
app.py
View File

@@ -62,7 +62,6 @@ def get_prompt(click_state, click_input):
}
return prompt
def get_frames_from_video(video_input, play_state):
"""
Args:
@@ -121,7 +120,9 @@ def generate_video_from_frames(frames, output_path, fps=30):
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def model_reset():
model.xmem.clear_memory()
return None
def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData):
"""
@@ -149,57 +150,60 @@ def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
yield painted_image, click_state, logit, mask
return painted_image, click_state, logit, mask
def vos_tracking_video(video_state, template_mask):
masks, logits, painted_images = model.generator(images=video_state[1], mask=template_mask)
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4")
return video_output
# image_selection_slider = gr.Slider(minimum=1, maximum=len(video_state[1]), value=1, label="Image Selection", interactive=True)
return video_output, painted_images, masks, logits
def vos_tracking_image(video_state, template_mask, result_queue, done_queue):
images = video_state[1]
images = images[:5]
for i in range(len(images)):
if i ==0:
mask, logit, painted_image = model.xmem.track(images[i], template_mask)
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
def vos_tracking_image(image_selection_slider, painted_images):
else:
mask, logit, painted_image = model.xmem.track(images[i])
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
done_queue.put(False)
time.sleep(1)
done_queue.put(True)
# images = video_state[1]
percentage = image_selection_slider / 100
select_frame_num = int(percentage * len(painted_images))
return painted_images[select_frame_num], select_frame_num
def update_gradio_image(result_queue, done_queue):
print("update_gradio_image")
while True:
if not done_queue.empty():
if done_queue.get():
break
if not result_queue.empty():
image = result_queue['images'].get()
mask = result_queue['masks'].get()
logit = result_queue['logits'].get()
painted_image = result_queue['painted'].get()
yield painted_image
def parallel_tracking(video_state, template_mask):
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
executor.submit(vos_tracking_image, video_state, template_mask, result_queue, done_queue)
executor.submit(update_gradio_image, result_queue, done_queue)
def interactive_correction(video_state, point_prompt, click_state, select_correction_frame, evt: gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
refine_image = video_state[1][select_correction_frame]
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
model.samcontroler.seg_again(refine_image)
corrected_mask, corrected_logit, corrected_painted_image = model.first_frame_click(
image=refine_image,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
return corrected_painted_image, [corrected_mask, corrected_logit, corrected_painted_image]
def correct_track(video_state, select_correction_frame, corrected_state, masks, logits, painted_images):
model.xmem.clear_memory()
# inference the following images
following_images = video_state[1][select_correction_frame+1:]
corrected_masks, corrected_logits, corrected_painted_images = model.generator(images=following_images, mask=corrected_state[0])
masks = masks[:select_correction_frame] + corrected_masks
logits = logits[:select_correction_frame] + corrected_logits
painted_images = painted_images[:select_correction_frame] + corrected_painted_images
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4")
return video_output, painted_images, logits, masks
# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth"
@@ -212,13 +216,10 @@ xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoi
# args, defined in track_anything.py
args = parse_augment()
args.port = 12214
args.port = 12212
args.device = "cuda:2"
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
result_queue = {"images": queue.Queue(),
"masks": queue.Queue(),
"logits": queue.Queue(),
"painted": queue.Queue()}
done_queue = queue.Queue()
with gr.Blocks() as iface:
"""
@@ -229,8 +230,12 @@ with gr.Blocks() as iface:
video_state = gr.State([[],[],[]])
click_state = gr.State([[],[]])
logits = gr.State([])
masks = gr.State([])
painted_images = gr.State([])
origin_image = gr.State(None)
template_mask = gr.State(None)
select_correction_frame = gr.State(None)
corrected_state = gr.State([[],[],[]])
# queue value for image refresh, origin image, mask, logits, painted image
@@ -277,10 +282,11 @@ with gr.Blocks() as iface:
# for intermedia result check and correction
# intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
video_output = gr.Video().style(height=360)
tracking_video_predict_button = gr.Button(value="Video")
tracking_video_predict_button = gr.Button(value="Tracking")
image_output = gr.Image(type="pil", interactive=True, elem_id="image_output").style(height=360)
tracking_image_predict_button = gr.Button(value="Tracking")
image_selection_slider = gr.Slider(minimum=0, maximum=100, step=0.1, value=0, label="Image Selection", interactive=True)
correct_track_button = gr.Button(value="Interactive Correction")
template_frame.select(
fn=sam_refine,
@@ -304,37 +310,44 @@ with gr.Blocks() as iface:
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, template_mask],
outputs=[video_output]
outputs=[video_output, painted_images, masks, logits]
)
tracking_image_predict_button.click(
fn=parallel_tracking,
inputs=[video_state, template_mask],
outputs=[image_output]
image_selection_slider.release(fn=vos_tracking_image,
inputs=[image_selection_slider, painted_images], outputs=[image_output, select_correction_frame], api_name="select_image")
# correction
image_output.select(
fn=interactive_correction,
inputs=[video_state, point_prompt, click_state, select_correction_frame],
outputs=[image_output, corrected_state]
)
correct_track_button.click(
fn=correct_track,
inputs=[video_state, select_correction_frame, corrected_state, masks, logits, painted_images],
outputs=[video_output, painted_images, logits, masks ]
)
# clear
# clear_button_clike.click(
# lambda x: ([[], [], []], x, ""),
# [origin_image],
# [click_state, image_input, wiki_output],
# queue=False,
# show_progress=False
# )
# clear_button_image.click(
# lambda: (None, [], [], [[], [], []], "", ""),
# [],
# [image_input, chatbot, state, click_state, wiki_output, origin_image],
# queue=False,
# show_progress=False
# )
# clear input
video_input.clear(
lambda: (None, [], [], [[], [], []], None),
lambda: (None, [], [], [[], [], []],
None, "", "", "", "", "", "", "", [[], []],
None),
[],
[video_input, state, play_state, video_state, template_frame],
[video_input, state, play_state, video_state,
template_frame, video_output, image_output, origin_image, template_mask, painted_images, masks, logits, click_state,
select_correction_frame],
queue=False,
show_progress=False
)
clear_button_image.click(
fn=model_reset
)
clear_button_clike.click(
lambda: ([[],[]]),
[],
[click_state],
queue=False,
show_progress=False
)
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")