inpaint function add -- li

This commit is contained in:
memoryunreal
2023-04-25 13:38:16 +00:00
parent 49f9be058f
commit 950d0390b8
6 changed files with 106 additions and 37 deletions

119
app.py
View File

@@ -1,9 +1,7 @@
import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import gdown
import cv2
import time
from PIL import Image
import numpy as np
import os
import sys
@@ -15,9 +13,8 @@ import requests
import json
import torchvision
import torch
import concurrent.futures
import queue
from tools.painter import mask_painter, point_painter
from tools.painter import mask_painter
# download checkpoints
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
@@ -35,6 +32,19 @@ def download_checkpoint(url, folder, filename):
return filepath
def download_checkpoint_from_google_drive(file_id, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("Downloading checkpoints from Google Drive... tips: If you cannot see the progress bar, please try to download it manuall \
and put it in the checkpointes directory. E2FGVI-HQ-CVPR22.pth: https://github.com/MCG-NKU/E2FGVI(E2FGVI-HQ model)")
url = f"https://drive.google.com/uc?id={file_id}"
gdown.download(url, filepath, quiet=False)
print("Downloaded successfully!")
return filepath
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
@@ -75,18 +85,18 @@ def get_frames_from_video(video_input, video_state):
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [None]*len(frames),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps
}
video_info = "Video Name: {}, FPS: {}, Total Frames: {}".format(video_state["video_name"], video_state["fps"], len(frames))
video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format(video_state["video_name"], video_state["fps"], len(frames), image_size)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
@@ -95,7 +105,7 @@ def get_frames_from_video(video_input, video_state):
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True)
gr.update(visible=True), gr.update(visible=True)
def run_example(example):
return video_input
@@ -119,8 +129,14 @@ def select_template(image_selection_slider, video_state, interactive_state):
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
# set the tracking end frame
def get_end_number(track_pause_number_slider, interactive_state):
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
return video_state["painted_images"][track_pause_number_slider],interactive_state
def get_resize_ratio(resize_ratio_slider, interactive_state):
interactive_state["resize_ratio"] = resize_ratio_slider
return interactive_state
# use sam to get the mask
@@ -213,7 +229,7 @@ def vos_tracking_video(video_state, interactive_state, mask_dropdown):
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
@@ -234,6 +250,36 @@ def vos_tracking_video(video_state, interactive_state, mask_dropdown):
#### shanggao code for mask save
return video_output, video_state, interactive_state
# extracting masks from mask_dropdown
# def extract_sole_mask(video_state, mask_dropdown):
# combined_masks =
# unique_masks = np.unique(combined_masks)
# return 0
# inpaint
def inpaint_video(video_state, interactive_state, mask_dropdown):
frames = np.asarray(video_state["origin_images"])
fps = video_state["fps"]
inpaint_masks = np.asarray(video_state["masks"])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(inpaint_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in inpaint_mask_numbers:
continue
inpaint_masks[inpaint_masks==i] = 0
# inpaint for videos
inpainted_frames = model.baseinpainter.inpaint(frames, inpaint_masks, ratio=interactive_state["resize_ratio"]) # numpy array, T, H, W, 3
video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
return video_output
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
@@ -263,17 +309,21 @@ SAM_checkpoint = "sam_vit_h_4b8939.pth"
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
e2fgvi_checkpoint = "E2FGVI-HQ-CVPR22.pth"
e2fgvi_checkpoint_id = "10wGdKSUOie0XmCr8SQ2A2FeDe-mfn5w3"
folder ="./checkpoints"
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
e2fgvi_checkpoint = download_checkpoint_from_google_drive(e2fgvi_checkpoint_id, folder, e2fgvi_checkpoint)
# args, defined in track_anything.py
args = parse_augment()
# args.port = 12315
# args.device = "cuda:1"
# args.device = "cuda:2"
# args.mask_save = True
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
# initialize sam, xmem, e2fgvi models
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, e2fgvi_checkpoint,args)
with gr.Blocks() as iface:
"""
@@ -289,7 +339,8 @@ with gr.Blocks() as iface:
"mask_names": [],
"masks": []
},
"track_end_number": None
"track_end_number": None,
"resize_ratio": 1
}
)
@@ -299,6 +350,7 @@ with gr.Blocks() as iface:
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
@@ -311,8 +363,11 @@ with gr.Blocks() as iface:
with gr.Column():
with gr.Row(scale=0.4):
video_input = gr.Video(autosize=True)
video_info = gr.Textbox()
with gr.Column():
video_info = gr.Textbox()
video_info = gr.Textbox(value="If you want to use the inpaint function, it is best to download and use a machine with more VRAM locally. \
Alternatively, you can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.")
resize_ratio_slider = gr.Slider(minimum=0.02, maximum=1, step=0.02, value=1, label="Resize ratio", visible=True)
with gr.Row():
@@ -348,7 +403,9 @@ with gr.Blocks() as iface:
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask_select", info=".", visible=False)
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False)
video_output = gr.Video(autosize=True, visible=False).style(height=360)
tracking_video_predict_button = gr.Button(value="Tracking", visible=False)
with gr.Row():
tracking_video_predict_button = gr.Button(value="Tracking", visible=False)
inpaint_video_predict_button = gr.Button(value="Inpaint", visible=False)
# first step: get the video information
extract_frames_button.click(
@@ -358,7 +415,7 @@ with gr.Blocks() as iface:
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, click_mode, clear_button_click, Add_mask_button, template_frame,
tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button]
tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button, inpaint_video_predict_button]
)
# second step: select images from slider
@@ -366,8 +423,11 @@ with gr.Blocks() as iface:
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, interactive_state],
outputs=[interactive_state], api_name="end_image")
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
resize_ratio_slider.release(fn=get_resize_ratio,
inputs=[resize_ratio_slider, interactive_state],
outputs=[interactive_state], api_name="resize_ratio")
# click select image to get mask using sam
template_frame.select(
@@ -396,6 +456,13 @@ with gr.Blocks() as iface:
outputs=[video_output, video_state, interactive_state]
)
# inpaint video from select image and mask
inpaint_video_predict_button.click(
fn=inpaint_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
@@ -410,6 +477,7 @@ with gr.Blocks() as iface:
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
@@ -423,14 +491,15 @@ with gr.Blocks() as iface:
"mask_names": [],
"masks": []
},
"track_end_number": 0
"track_end_number": 0,
"resize_ratio": 1
},
[[],[]],
None,
None,
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=[]), gr.update(visible=False) \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=[]), gr.update(visible=False), gr.update(visible=False) \
),
[],
@@ -441,7 +510,7 @@ with gr.Blocks() as iface:
video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, click_mode, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button
Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button,inpaint_video_predict_button
],
queue=False,
show_progress=False)