Format code (#877)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot]
2023-07-26 19:51:48 +08:00
committed by GitHub
parent b1cb31854a
commit f7fc51c81a
5 changed files with 126 additions and 96 deletions

View File

@@ -1,4 +1,5 @@
import os,sys,pdb,torch
import os, sys, pdb, torch
now_dir = os.getcwd()
sys.path.append(now_dir)
import argparse
@@ -9,35 +10,36 @@ import numpy as np
from multiprocessing import cpu_count
####
#USAGE
# USAGE
#
#In your Terminal or CMD or whatever
#python infer_cli.py [TRANSPOSE_VALUE] "[INPUT_PATH]" "[OUTPUT_PATH]" "[MODEL_PATH]" "[INDEX_FILE_PATH]" "[INFERENCE_DEVICE]" "[METHOD]"
# In your Terminal or CMD or whatever
# python infer_cli.py [TRANSPOSE_VALUE] "[INPUT_PATH]" "[OUTPUT_PATH]" "[MODEL_PATH]" "[INDEX_FILE_PATH]" "[INFERENCE_DEVICE]" "[METHOD]"
using_cli = False
device = "cuda:0"
is_half = False
if(len(sys.argv) > 0):
f0_up_key=int(sys.argv[1]) #transpose value
input_path=sys.argv[2]
output_path=sys.argv[3]
model_path=sys.argv[4]
file_index=sys.argv[5] #.index file
device=sys.argv[6]
f0_method=sys.argv[7] #pm or harvest or crepe
if len(sys.argv) > 0:
f0_up_key = int(sys.argv[1]) # transpose value
input_path = sys.argv[2]
output_path = sys.argv[3]
model_path = sys.argv[4]
file_index = sys.argv[5] # .index file
device = sys.argv[6]
f0_method = sys.argv[7] # pm or harvest or crepe
using_cli = True
#file_index2=sys.argv[8]
#index_rate=float(sys.argv[10]) #search feature ratio
#filter_radius=float(sys.argv[11]) #median filter
#resample_sr=float(sys.argv[12]) #resample audio in post processing
#rms_mix_rate=float(sys.argv[13]) #search feature
# file_index2=sys.argv[8]
# index_rate=float(sys.argv[10]) #search feature ratio
# filter_radius=float(sys.argv[11]) #median filter
# resample_sr=float(sys.argv[12]) #resample audio in post processing
# rms_mix_rate=float(sys.argv[13]) #search feature
print(sys.argv)
class Config:
def __init__(self,device,is_half):
def __init__(self, device, is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
@@ -113,8 +115,9 @@ class Config:
return x_pad, x_query, x_center, x_max
config=Config(device,is_half)
now_dir=os.getcwd()
config = Config(device, is_half)
now_dir = os.getcwd()
sys.path.append(now_dir)
from vc_infer_pipeline import VC
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
@@ -122,7 +125,9 @@ from my_utils import load_audio
from fairseq import checkpoint_utils
from scipy.io import wavfile
hubert_model=None
hubert_model = None
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
@@ -137,41 +142,42 @@ def load_hubert():
hubert_model = hubert_model.float()
hubert_model.eval()
def vc_single(
sid=0,
input_audio_path=None,
f0_up_key=0,
f0_up_key=0,
f0_file=None,
f0_method="pm",
file_index="", #.index file
f0_method="pm",
file_index="", # .index file
file_index2="",
# file_big_npy,
index_rate=1.0,
filter_radius=3,
resample_sr=0,
rms_mix_rate=1.0,
index_rate=1.0,
filter_radius=3,
resample_sr=0,
rms_mix_rate=1.0,
model_path="",
output_path="",
protect=0.33
protect=0.33,
):
global tgt_sr, net_g, vc, hubert_model, version
get_vc(model_path)
if input_audio_path is None:
return "You need to upload an audio file", None
f0_up_key = int(f0_up_key)
audio = load_audio(input_audio_path, 16000)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
file_index = (
(
file_index.strip(" ")
@@ -184,7 +190,7 @@ def vc_single(
if file_index != ""
else file_index2
)
audio_opt = vc.pipeline(
hubert_model,
net_g,
@@ -204,32 +210,49 @@ def vc_single(
rms_mix_rate,
version,
f0_file=f0_file,
protect=protect
protect=protect,
)
wavfile.write(output_path, tgt_sr, audio_opt)
return('processed')
return "processed"
def get_vc(model_path):
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half, version
print("loading pth %s"%model_path)
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
print("loading pth %s" % model_path)
cpt = torch.load(model_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
if_f0=cpt.get("f0",1)
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if(if_f0==1):
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(device)
if (is_half):net_g = net_g.half()
else:net_g = net_g.float()
if is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk=cpt["config"][-3]
n_spk = cpt["config"][-3]
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
if(using_cli):
vc_single(sid=0,input_audio_path=input_path,f0_up_key=f0_up_key,f0_file=None,f0_method=f0_method,file_index=file_index,file_index2="",index_rate=1,filter_radius=3,resample_sr=0,rms_mix_rate=0,model_path=model_path,output_path=output_path)
if using_cli:
vc_single(
sid=0,
input_audio_path=input_path,
f0_up_key=f0_up_key,
f0_file=None,
f0_method=f0_method,
file_index=file_index,
file_index2="",
index_rate=1,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0,
model_path=model_path,
output_path=output_path,
)